Difference between revisions of "009A Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
Line 11: Line 11:
  
 
<span class="exam">If you think &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: -4px">x=0,</math>&nbsp; what kind of discontinuity is it?
 
<span class="exam">If you think &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: -4px">x=0,</math>&nbsp; what kind of discontinuity is it?
 +
<hr>
 +
[[009A Sample Final 3, Problem 4 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|}
 
  
 +
[[009A Sample Final 3, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We first calculate &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0^+}f(x).</math>&nbsp; We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 0^+} x-\cos x}\\
 
&&\\
 
& = & \displaystyle{0-\cos(0)}\\
 
&&\\
 
& = & \displaystyle{-1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we calculate &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0^-}f(x).</math>&nbsp; We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{x}{|x|}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0^-} \frac{x}{-x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0^-} -1}\\
 
&&\\
 
& = & \displaystyle{-1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Since
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=-1,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} f(x)=-1.</math>
 
|-
 
|But,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(0)=0\ne \lim_{x\rightarrow 3} f(x).</math>
 
|-
 
|Thus, <math style="vertical-align: -5px">f(x)</math>&nbsp; is not continuous.
 
|-
 
|It is a jump discontinuity.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is not continuous. It is a jump discontinuity.
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:38, 2 December 2017

Discuss, without graphing, if the following function is continuous at  

If you think    is not continuous at    what kind of discontinuity is it?


Solution


Detailed Solution


Return to Sample Exam