Difference between revisions of "009A Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
Line 3: Line 3:
 
::<span class="exam"><math>f(x)=3x-x^2</math>
 
::<span class="exam"><math>f(x)=3x-x^2</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 3, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|<math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 3, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the limit definition of derivative, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3(x+h)-(x+h)^2)-(3x-x^2)}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3x+3h-(x^2+2xh+h^2)-3x+x^2}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h-2xh-h^2}{h}.}
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h-2xh-h^2}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} 3-2x-h}\\
 
&&\\
 
& = & \displaystyle{3-2x.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=3-2x</math>
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:36, 2 December 2017

Find the derivative of the following function using the limit definition of the derivative:


Solution


Detailed Solution


Return to Sample Exam