Difference between revisions of "009C Sample Final 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">A curve is given in polar coordinates by &nbsp;<math style="vertical-align: -2px">r=4+3\sin \theta</math>
+
<span class="exam">A curve is given in polar coordinates by &nbsp;<math style="vertical-align: -2px">r=4+3\sin \theta.</math>
::<math>0\leq \theta \leq 2\pi</math>
 
  
 
<span class="exam">(a) Sketch the curve.
 
<span class="exam">(a) Sketch the curve.
Line 6: Line 5:
 
<span class="exam">(b) Find the area enclosed by the curve.
 
<span class="exam">(b) Find the area enclosed by the curve.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 8 Solution|'''<u>Solution</u>''']]
|-
 
|The area under a polar curve &nbsp; <math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; is given by
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math>&nbsp; for appropriate values of &nbsp;<math>\alpha_1,\alpha_2.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a) &nbsp;
 
|-
 
|Insert graph
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The area of the curve, &nbsp;<math>A</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{A} & = & \displaystyle{\int_0^{2\pi} \frac{1}{2}r^2~d\theta}\\
 
&&\\
 
& = & \displaystyle{\int_0^{2\pi} \frac{1}{2} (4+3\sin\theta)^2~d\theta.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Using the double angle formula for &nbsp;<math style="vertical-align: -5px">\cos(2\theta),</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{A} & = & \displaystyle{\frac{1}{2}\int_0^{2\pi}  (16+24\sin\theta+9\sin^2\theta)~d\theta} \\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\int_0^{2\pi}  \bigg(16+24\sin\theta+\frac{9}{2}(1-\cos(2\theta))\bigg)~d\theta}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\bigg[16\theta-24\cos\theta+\frac{9}{2}\theta-\frac{9}{4}\sin(2\theta)\bigg]\bigg|_0^{2\pi}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\bigg[\frac{41}{2}\theta-24\cos\theta-\frac{9}{4}\sin(2\theta)\bigg]\bigg|_0^{2\pi}.}\\
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Lastly, we evaluate to get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{A} & = &\displaystyle{\frac{1}{2}\bigg[\frac{41}{2}(2\pi)-24\cos(2\pi)-\frac{9}{4}\sin(4\pi)\bigg]-\frac{1}{2}\bigg[\frac{41}{2}(0)-24\cos(0)-\frac{9}{4}\sin(0)\bigg]}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}(41\pi-24)-\frac{1}{2}(-24)}\\
 
&&\\
 
& = & \displaystyle{\frac{41\pi}{2}.}\\
 
\end{array}</math>
 
|}
 
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; See above
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{41\pi}{2}</math>
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:30, 3 December 2017

A curve is given in polar coordinates by  

(a) Sketch the curve.

(b) Find the area enclosed by the curve.


Solution


Detailed Solution


Return to Sample Exam