Difference between revisions of "009C Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
<span class="exam">(b) Find the equation of the tangent line to the curve at the origin.
 
<span class="exam">(b) Find the equation of the tangent line to the curve at the origin.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 10 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' What two pieces of information do you need to write the equation of a line?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;You need the slope of the line and a point on the line.
 
|-
 
|'''2.''' What is the slope of the tangent line of a parametric curve?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a) &nbsp;
 
|-
 
|Insert graph
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to find the slope of the tangent line.
 
|-
 
|Since &nbsp; <math style="vertical-align: -14px">\frac{dy}{dt}=3t^2-1</math> &nbsp; and &nbsp; <math style="vertical-align: -14px">\frac{dx}{dt}=2t,</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, the origin corresponds to <math>x=0</math> and <math>y=0.</math>
 
|-
 
|This gives us two equations. When we solve for <math>t,</math> we get <math>t=0.</math>
 
|-
 
|Plugging in <math>t=0</math> into
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{3t^2-1}{2t},</math>
 
|-
 
|we see that <math>\frac{dy}{dx}</math> is undefined at <math>t=0.</math>
 
|-
 
|So, there is no tangent line at the origin.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; See above
 
|-
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp;  There is no tangent line at the origin.
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:57, 2 December 2017

A curve is described parametrically by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=t^3-t}

(a) Sketch the curve for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2\le t \le 2.}

(b) Find the equation of the tangent line to the curve at the origin.


Solution


Detailed Solution


Return to Sample Exam