Difference between revisions of "009C Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
<span class="exam">(b) Express the definite integral &nbsp;<math style="vertical-align: -14px">\int_0^1 \sin(x^2)~dx</math>&nbsp; as a number series.
 
<span class="exam">(b) Express the definite integral &nbsp;<math style="vertical-align: -14px">\int_0^1 \sin(x^2)~dx</math>&nbsp; as a number series.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 6 Solution|'''<u>Solution</u>''']]
|-
 
|What is the power series of &nbsp;<math style="vertical-align: -1px">\sin x?</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; The power series of &nbsp;<math style="vertical-align: -1px"> \sin x</math>&nbsp; is &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The power series of &nbsp;<math style="vertical-align: -1px"> \sin x</math>&nbsp; is &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!}.</math>
 
|-
 
|So, the power series of &nbsp;<math style="vertical-align: -5px">\sin(x^2)</math> &nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sin(x^2)} & = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n(x^2)^{2n+1}}{(2n+1)!}}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, to express the indefinite integral as a power series, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \sin(x^2)~dx} & = & \displaystyle{\int \sum_{n=0}^\infty \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=0}^\infty \int \frac{(-1)^nx^{4n+2}}{(2n+1)!}~dx}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\sum_{n=0}^\infty \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math></math>
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:31, 2 December 2017

(a) Express the indefinite integral    as a power series.

(b) Express the definite integral    as a number series.


Solution


Detailed Solution


Return to Sample Exam