Difference between revisions of "009C Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
::<span class="exam"><math>x=t^2</math>
 
::<span class="exam"><math>x=t^2</math>
 
::<span class="exam"><math>y=t^3</math>
 
::<span class="exam"><math>y=t^3</math>
::<span class="exam"><math>0\leq t \leq 2</math>
+
::<span class="exam"><math>1\leq t \leq 2</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 10 Solution|'''<u>Solution</u>''']]
|-
 
|The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a parametric curve with &nbsp;<math style="vertical-align: -4px">\alpha \leq t \leq \beta </math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\alpha}^{\beta} \sqrt{\bigg(\frac{dx}{dt}\bigg)^2+\bigg(\frac{dy}{dt}\bigg)^2}~dt.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to calculate &nbsp;<math style="vertical-align: -14px">\frac{dx}{dt}</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{dy}{dt}.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -14px">x=t^2,~\frac{dx}{dt}=2t.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -14px">y=t^3,~\frac{dy}{dt}=3t^2.</math>
 
|-
 
|Using the formula in Foundations, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^2 \sqrt{(2t)^2+(3t^2)^2}~dt.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{L} & = & \displaystyle{\int_1^2 \sqrt{4t^2+9t^4}~dt}\\
 
&&\\
 
& = & \displaystyle{\int_1^2 \sqrt{t^2(4+9t^2)}~dt}\\
 
&&\\
 
& = & \displaystyle{\int_1^2 t\sqrt{4+9t^2}~dt.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|-
 
|Let &nbsp;<math style="vertical-align: -2px">u=4+9t^2.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: -2px">du=18tdt</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{du}{18}=tdt.</math>
 
|-
 
|Also, since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=4+9(1)^2=13</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=4+9(2)^2=40.</math>
 
|-
 
|Hence,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{L} & = & \displaystyle{\frac{1}{18}\int_{13}^{40} \sqrt{u}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{27} u^{\frac{3}{2}}\bigg|_{13}^{40}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{27}(40)^{\frac{3}{2}}-\frac{1}{27}(13)^{\frac{3}{2}}.}\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{27}(40)^{\frac{3}{2}}-\frac{1}{27}(13)^{\frac{3}{2}}</math>
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:03, 3 December 2017

Find the length of the curve given by


Solution


Detailed Solution


Return to Sample Exam