Difference between revisions of "009C Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
::<span class="exam"><math>x=t^2</math>
 
::<span class="exam"><math>x=t^2</math>
 
::<span class="exam"><math>y=t^3</math>
 
::<span class="exam"><math>y=t^3</math>
::<span class="exam"><math>0\leq t \leq 2</math>
+
::<span class="exam"><math>1\leq t \leq 2</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 10 Solution|'''<u>Solution</u>''']]
|-
 
|The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; with &nbsp;<math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp;
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:03, 3 December 2017

Find the length of the curve given by


Solution


Detailed Solution


Return to Sample Exam