Difference between revisions of "009C Sample Final 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam">(a) Find the radius of convergence for the power series ::<math>\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}.</math> <span class="exam">(b) Find the inter...")
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam">(a) Find the radius of convergence for the power series
 
<span class="exam">(a) Find the radius of convergence for the power series
  
::<math>\sum_{n=1}^{+\infty} (-1)^n \frac{x^n}{n}.</math>
+
::<math>\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}.</math>
  
 
<span class="exam">(b) Find the interval of convergence of the above series.
 
<span class="exam">(b) Find the interval of convergence of the above series.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009C Sample Final 2, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:27, 2 December 2017

(a) Find the radius of convergence for the power series

(b) Find the interval of convergence of the above series.


Solution


Detailed Solution


Return to Sample Exam