Difference between revisions of "009B Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
<span class="exam">(c) &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx</math>
 
<span class="exam">(c) &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx</math>
 +
<hr>
 +
[[009B Sample Final 2, Problem 6 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' For &nbsp;<math>\int \frac{dx}{x^2\sqrt{x^2-16}},</math>&nbsp; what would be the correct trig substitution?
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;The correct substitution is &nbsp;<math>x=4\sec^2\theta.</math>
 
|-
 
|'''2.''' We have the Pythagorean identity
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\cos^2(x)=1-\sin^2(x).</math>
 
|-
 
|'''3.''' Through partial fraction decomposition, we can write the fraction
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
 
|}
 
  
 +
[[009B Sample Final 2, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by using trig substitution.
 
|-
 
|Let &nbsp;<math>x=4\sec \theta.</math>
 
|-
 
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta ~d\theta.</math>
 
|-
 
|So, the integral becomes
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta \sqrt{16\sec^2 \theta -16}}~d\theta}\\
 
&&\\
 
& = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta (4\tan \theta)} ~d\theta}\\
 
&&\\
 
& = & \displaystyle{\int \frac{1}{16\sec \theta} ~d\theta.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we integrate to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\frac{1}{16}\cos\theta~d\theta}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{16}\sin \theta +C}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x \cos^2x \cos x~dx}\\
 
&&\\
 
& = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x (1-\sin^2x)\cos x~dx.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|-
 
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x ~dx.</math>
 
|-
 
|Since this is a definite integral, we need to change the bounds of integration.
 
|-
 
|Then, we have
 
|-
 
|&nbsp;<math>u_1=\sin(-\pi)=0</math>&nbsp; and &nbsp;<math>u_2=\sin(\pi)=0.</math>
 
|-
 
|So, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_0^0 u^3(1-u^2)~du}\\
 
&&\\
 
& = & \displaystyle{0.}
 
\end{array}</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx=\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx.</math>
 
|-
 
|Now, we use partial fraction decomposition. Wet set
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 
|-
 
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 
|-
 
|If we  let &nbsp;<math>x=-1,</math>&nbsp; we get &nbsp;<math>A=-1.</math>
 
|-
 
|If we  let &nbsp;<math>x=-5,</math>&nbsp; we get &nbsp;<math>B=2.</math>
 
|-
 
|So, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{-1}{x+1}+\frac{2}{x+5}.</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_0^1 \frac{-1}{x+1}+\frac{2}{x+5}~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^1 \frac{-1}{x+1}~dx+\int_0^1 \frac{2}{x+5}~dx.}
 
\end{array}</math>
 
|-
 
|Now, we use &nbsp;<math>u</math>-substitution for both of these integrals.
 
|-
 
|Let &nbsp;<math>u=x+1.</math>&nbsp; Then, &nbsp;<math>du=dx.</math>
 
|-
 
|Let &nbsp;<math>t=x+5.</math>&nbsp; Then, &nbsp;<math>dt=dx.</math>
 
|-
 
|Since these are definite integrals, we need to change the bounds of integration.
 
|-
 
|We have &nbsp;<math>u_1=0+1=1</math>&nbsp; and &nbsp;<math>u_2=1+1=2.</math>
 
|-
 
|Also, &nbsp;<math>t_1=0+5=5</math>&nbsp; and &nbsp;<math>u_2=1+5=6.</math> 
 
|-
 
|Therefore, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_1^2 \frac{-1}{u}~du+\int_5^6 \frac{2}{t}~dt}\\
 
&&\\
 
& = & \displaystyle{-\ln|u|\bigg|_1^2+2\ln|t|\bigg|_5^6}\\
 
&&\\
 
& = & \displaystyle{-\ln(2)+2\ln(6)-2\ln(5).}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>0</math>
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>-\ln(2)+2\ln(6)-2\ln(5)</math>
 
|}
 
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:30, 2 December 2017

Evaluate the following integrals:

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam