Difference between revisions of "009B Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 27: Line 27:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|To graph &nbsp;<math style="vertical-align: -5px">\rho(x),</math>&nbsp; we need to find out when &nbsp;<math style="vertical-align: -2px">-x^2+6x+16</math>&nbsp; is negative.
 
|-
 
|-
|
+
|To do this, we set
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>-x^2+6x+16=0.</math>
 
|-
 
|-
|
+
|So, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{0} & = & \displaystyle{-x^2+6x+16}\\
 +
&&\\
 +
& = & \displaystyle{-(x^2-6x-16)}\\
 +
&&\\
 +
& = & \displaystyle{-(x+2)(x-8).}
 +
\end{array}</math>
 +
|-
 +
|Hence, we get &nbsp;<math style="vertical-align: 0px">x=-2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=8.</math>&nbsp;
 +
|-
 +
|But, &nbsp;<math style="vertical-align: 0px">x=-2</math>&nbsp; is outside of the domain of &nbsp;<math style="vertical-align: -5px">\rho(x).</math>
 +
|-
 +
|Using test points, we can see that &nbsp;<math style="vertical-align: -2px">-x^2+6x+16</math>&nbsp; is positive in the interval &nbsp;<math style="vertical-align: -5px">[0,8]</math>
 +
|-
 +
|and negative in the interval &nbsp;<math style="vertical-align: -5px">[8,12].</math>
 +
|-
 +
|Hence, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\rho(x) = \left\{
 +
    \begin{array}{lr}
 +
      -x^2+6x+16 &  \text{if }0\le x \le 8\\
 +
      x^2-6x-16 & \text{if }8<x\le 12
 +
    \end{array}
 +
  \right.
 +
</math>
 +
|-
 +
|The graph of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is displayed below.
 
|}
 
|}
  
Line 39: Line 67:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We need to find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">\rho(x).</math>
 +
|-
 +
|We begin by finding the critical points of
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -2px">-x^2+6x+16.</math>
 
|-
 
|-
|  
+
|Taking the derivative, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -2px">-2x+6.</math>
 
|-
 
|-
|
+
|Solving &nbsp;<math style="vertical-align: -4px">-2x+6=0,</math>&nbsp; we get a critical point at
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: 0px">x=3.</math>
 +
|-
 +
|Now, we calculate &nbsp;<math style="vertical-align: -5px">\rho(0),~\rho(3),~\rho(12).</math>
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\rho(0)=16,~\rho(3)=25,~\rho(12)=56.</math>
 +
|-
 +
|Therefore, the minimum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">16</math>&nbsp; and the maximum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">56.</math>
 
|}
 
|}
  
Line 53: Line 95:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|To calculate the total number of trout, we need to find
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math> \int_0^{12} \rho(x)~dx.</math>
 +
|-
 +
|Using the information from Step 1 of (a), we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math> \int_0^{12} \rho(x)~dx=\int_0^8 (-x^2+6x+16)~dx+\int_8^{12} (x^2-6x-16)~dx.</math>
 
|}
 
|}
  
Line 61: Line 107:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We integrate to get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^{12} \rho(x)~dx} & = & \displaystyle{\bigg(\frac{-x^3}{3}+3x^2+16x\bigg)\bigg|_0^8+\bigg(\frac{x^3}{3}-3x^2-16x\bigg)\bigg|_8^{12}}\\
 +
&&\\
 +
& = & \displaystyle{\bigg(\frac{-8^3}{3}+3(8)^2+16(8)\bigg)-0+\bigg(\frac{(12)^3}{3}-3(12)^2-16(12)\bigg)-\bigg(\frac{8^3}{3}-3(8)^2-16(8)\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{8\bigg(\frac{56}{3}\bigg)+12\bigg(\frac{12}{3}\bigg)+8\bigg(\frac{56}{3}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{752}{3}.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Thus, there are approximately &nbsp;<math style="vertical-align: -1px">251</math>&nbsp; trout.
 
|}
 
|}
  
Line 70: Line 126:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The minimum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">16</math>&nbsp; and the maximum of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">56.</math> (See above for graph.)
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; There are approximately &nbsp;<math style="vertical-align: -1px">251</math>&nbsp; trout.
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 14:46, 12 March 2017

The population density of trout in a stream is

where    is measured in trout per mile and    is measured in miles.    runs from 0 to 12.

(a) Graph    and find the minimum and maximum.

(b) Find the total number of trout in the stream.

Foundations:  
What is the relationship between population density    and the total populations?
       The total population is equal to  
       for appropriate choices of  


Solution:

(a)

Step 1:  
To graph    we need to find out when    is negative.
To do this, we set
       
So, we have
       
Hence, we get    and   
But,    is outside of the domain of  
Using test points, we can see that    is positive in the interval  
and negative in the interval  
Hence, we have
       
The graph of    is displayed below.
Step 2:  
We need to find the absolute maximum and minimum of  
We begin by finding the critical points of
       
Taking the derivative, we get
       
Solving    we get a critical point at
       
Now, we calculate  
We have
       
Therefore, the minimum of    is    and the maximum of    is  

(b)

Step 1:  
To calculate the total number of trout, we need to find
       
Using the information from Step 1 of (a), we have
       
Step 2:  
We integrate to get
       
Thus, there are approximately    trout.


Final Answer:  
    (a)     The minimum of    is    and the maximum of    is   (See above for graph.)
    (b)     There are approximately    trout.

Return to Sample Exam