Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam"> Find the following integrals <span class="exam">(a)  <math>\int \frac{3x-1}{2x^2-x}~dx</math> <span class="exam">(b)  <math>\int \frac{\sqr...")
 
(9 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<span class="exam">(b) &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx</math>
 
<span class="exam">(b) &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 3, Problem 6 Solution|'''<u>Solution</u>''']]
|-
 
|Through partial fraction decomposition, we can write the fraction
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 3, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we factor the denominator to get
 
|-
 
|<math>\int \frac{3x-1}{2x^2-x}~dx=\int \frac{3x-1}{x(2x-1)}.</math>
 
|-
 
|We use the method of partial fraction decomposition.
 
|-
 
|We let
 
|-
 
|<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|}
 
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:47, 2 December 2017

Find the following integrals

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam