Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 16: | Line 16: | ||
| for some constants <math style="vertical-align: -4px">A,B.</math> | | for some constants <math style="vertical-align: -4px">A,B.</math> | ||
|- | |- | ||
− | |'''2.''' | + | |'''2.''' Recall the Pythagorean identity |
|- | |- | ||
− | | <math style="vertical-align: -5px">\sin^2(x) | + | | <math style="vertical-align: -5px">\sin^2(x)+\cos^2(x)=1.</math> |
|} | |} | ||
Line 36: | Line 36: | ||
|Now, we proceed by <math>u</math>-substitution. | |Now, we proceed by <math>u</math>-substitution. | ||
|- | |- | ||
− | |Let <math style="vertical-align: 0px">u=t^3.</math> Then, <math style="vertical-align: 0px">du=3t^2dt</math> and <math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math> | + | |Let <math style="vertical-align: 0px">u=t^3.</math> |
+ | |- | ||
+ | |Then, <math style="vertical-align: 0px">du=3t^2dt</math> and <math style="vertical-align: -14px">\frac{du}{3}=t^2dt.</math> | ||
|- | |- | ||
|So, we have | |So, we have | ||
Line 86: | Line 88: | ||
& = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | & = & \displaystyle{\int \frac{2x^2+x}{2x^2+x}~dx+\int\frac{1-x}{2x^2+x}~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int ~dx+\int\frac{1-x}{2x^2+x}~dx}.\\ | + | & = & \displaystyle{\int 1~dx+\int\frac{1-x}{2x^2+x}~dx}.\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 121: | Line 123: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int ~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ | + | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{\int 1~dx+\int\frac{1}{x}~dx+\int\frac{-3}{2x+1}~dx}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\ | & = & \displaystyle{x+\ln x+ \int\frac{-3}{2x+1}~dx.}\\ | ||
Line 132: | Line 134: | ||
|For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | |For the final remaining integral, we use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
− | |Let <math style="vertical-align: -2px">u=2x+1.</math> Then, <math style="vertical-align: 0px">du=2\,dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math> | + | |Let <math style="vertical-align: -2px">u=2x+1.</math> |
+ | |- | ||
+ | |Then, <math style="vertical-align: 0px">du=2\,dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math> | ||
|- | |- | ||
− | |Thus, our | + | |Thus, our integral becomes |
|- | |- | ||
| | | | ||
Line 148: | Line 152: | ||
|- | |- | ||
| | | | ||
− | <math>\int \frac{2x^2+1}{2x^2+x}~dx | + | <math>\begin{array}{rcl} |
+ | \displaystyle{\int \frac{2x^2+1}{2x^2+x}~dx} & = & \displaystyle{x+\ln x-\frac{3}{2}\ln (2x+1) +C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Latest revision as of 14:01, 20 May 2017
Compute the following integrals.
(a)
(b)
(c)
Foundations: |
---|
1. Through partial fraction decomposition, we can write the fraction |
for some constants |
2. Recall the Pythagorean identity |
Solution:
(a)
Step 1: |
---|
We first note that |
|
Now, we proceed by -substitution. |
Let |
Then, and |
So, we have |
|
Step 2: |
---|
Now, we need to use trig substitution. |
Let Then, |
So, we have |
|
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since we let |
Multiplying both sides of the last equation by |
we get |
If we let the last equation becomes |
If we let then we get Thus, |
So, in summation, we have |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let |
Then, and |
Thus, our integral becomes |
|
Therefore, the final answer is |
|
(c)
Step 1: |
---|
First, we write |
Using the identity we get |
If we use this identity, we have |
Step 2: |
---|
Now, we proceed by -substitution. |
Let Then, |
So we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |