Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
 
   \right.
 
   \right.
 
</math>
 
</math>
<span class="exam">(a) Show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3</math>.
+
<span class="exam">(a) Show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>
  
 
<span class="exam">(b) Using the limit definition of the derivative, and computing the limits from both sides, show that &nbsp;<math style="vertical-align: -3px">f(x)</math>&nbsp; is differentiable at &nbsp;<math style="vertical-align: 0px">x=3</math>.
 
<span class="exam">(b) Using the limit definition of the derivative, and computing the limits from both sides, show that &nbsp;<math style="vertical-align: -3px">f(x)</math>&nbsp; is differentiable at &nbsp;<math style="vertical-align: 0px">x=3</math>.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=a</math>&nbsp; if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|-
 
|'''2.''' The definition of derivative for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We first calculate &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x).</math>&nbsp; We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\
 
&&\\
 
& = & \displaystyle{4\sqrt{3+1}}\\
 
&&\\
 
& = & \displaystyle{8.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we calculate &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 3^-}f(x).</math>&nbsp; We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\
 
&&\\
 
& = & \displaystyle{3+5}\\
 
&&\\
 
& = & \displaystyle{8.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we calculate &nbsp;<math style="vertical-align: -5px">f(3).</math>&nbsp; We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>f(3)=4\sqrt{3+1}\,=\,8.</math>
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),</math>
 
|-
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous.
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We need to use the limit definition of derivative and calculate the limit from both sides. So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{h}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^-}1}\\
 
&&\\
 
& = & \displaystyle{1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(\sqrt{4+h}-\sqrt{4})(\sqrt{4+h}+\sqrt{4})}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4(4+h-4)}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4h}{h(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4}{(\sqrt{4+h}+\sqrt{4})}}\\
 
&&\\
 
& = & \displaystyle{\frac{4}{2\sqrt{4}}}\\
 
&&\\
 
& = & \displaystyle{1.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>
 
|-
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; is differentiable at &nbsp;<math style="vertical-align: 0px">x=3.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous.
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&thinsp; is differentiable at <math style="vertical-align: 0px">x=3.</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:41, 2 December 2017

Consider the following piecewise defined function:

(a) Show that    is continuous at  

(b) Using the limit definition of the derivative, and computing the limits from both sides, show that    is differentiable at  .


Solution


Detailed Solution


Return to Sample Exam