Difference between revisions of "009C Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 26: Line 26:
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
  
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^\infty n^nx^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^\infty n^nx^n</math>
  
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
  
 
== [[009C_Sample Midterm 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009C_Sample Midterm 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> If <math>\sum_{n=0}^\infty c_nx^n</math> converges, does it follow that the following series converges?
+
<span class="exam"> If &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges, does it follow that the following series converges?
  
<span class="exam">(a) <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
  
<span class="exam">(b) <math>\sum_{n=0}^\infty c_n(-x)^n </math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^\infty c_n(-x)^n </math>

Latest revision as of 10:42, 18 March 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Evaluate:

(a)  

(b)  

 Problem 2 

Determine convergence or divergence:

 Problem 3 

Determine convergence or divergence:

(a)  

(b)  

 Problem 4 

Find the radius of convergence and interval of convergence of the series.

(a)  

(b)  

 Problem 5 

If    converges, does it follow that the following series converges?

(a)  

(b)