Difference between revisions of "009C Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam">Determine whether the following series converges or diverges. ::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math> <hr> 009C Sample Final 1, Pro...")
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
 
::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.'''  '''Ratio Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|
 
'''2.''' If a series absolutely converges, then it also converges.
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 1, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using the ratio test.
 
|-
 
|We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n!}{n!}\frac{n^n}{(n+1)^{n+1}}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n^n}{(n+1)(n+1)^n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n.}\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we continue to calculate the limit from Step 1. We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}e^{\ln(\frac{n}{n+1})^n}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\
 
&&\\
 
& = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we need to calculate <math>\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).</math>
 
|-
 
|First, we write the limit as
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
 
|-
 
|Now, we use L'Hopital's Rule to get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n(n+1)}(-n^2)}\\
 
&&\\
 
& = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\
 
&&\\
 
& = & \displaystyle{-1.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|We go back to Step 2 and use the limit we calculated in Step 3.
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math>
 
|-
 
|Thus, the series absolutely converges by the Ratio Test.
 
|-
 
|Since the series absolutely converges, the series also converges.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; converges
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:00, 2 December 2017

Determine whether the following series converges or diverges.


Solution


Detailed Solution


Return to Sample Exam