Difference between revisions of "009B Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Consider the solid obtained by rotating the area bounded by the following three functions about the <math style="vertical-align: -3px">y</math>-axis:
+
<span class="exam"> The region bounded by the parabola &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; and the line &nbsp;<math style="vertical-align: -4px">y=2x</math>&nbsp; in the first quadrant is revolved about the &nbsp;<math style="vertical-align: -4px">y</math>-axis to generate a solid.
  
::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>.
+
<span class="exam">(a) Sketch the region bounded by the given functions and find their points of intersection.  
 
 
<span class="exam">(a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
 
 
 
::<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.)
 
  
 
<span class="exam">(b) Set up the integral for the volume of the solid.
 
<span class="exam">(b) Set up the integral for the volume of the solid.
Line 11: Line 7:
 
<span class="exam">(c) Find the volume of the solid by computing the integral.
 
<span class="exam">(c) Find the volume of the solid by computing the integral.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 1, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|Recall:
 
|-
 
|'''1.''' You can find the intersection points of two functions, say <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|
 
::by setting <math style="vertical-align: -5px">f(x)=g(x)</math> and solving for <math style="vertical-align: 0px">x</math>.
 
|-
 
|'''2.''' The volume of a solid obtained by rotating an area around the <math style="vertical-align: -4px">y</math>-axis using cylindrical shells is given by 
 
|-
 
|
 
::<math style="vertical-align: -13px">\int 2\pi rh~dx,</math> where <math style="vertical-align: 0px">r</math> is the radius of the shells and <math style="vertical-align: 0px">h</math> is the height of the shells.
 
|}
 
 
 
 
 
'''Solution:'''
 
 
 
'''(a)'''
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we sketch the region bounded by the three functions.
 
|-
 
|Insert graph here.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Setting the equations equal, we have <math style="vertical-align: 0px">e^x=ex</math>.
 
|-
 
|We get one intersection point, which is <math style="vertical-align: -4px">(1,e)</math>.
 
|-
 
|This intersection point can be seen in the graph shown in Step 1.
 
|}
 
 
 
'''(b)'''
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using cylindrical shells. The radius of the shells is given by <math style="vertical-align: 0px">r=x</math>.
 
|-
 
|The height of the shells is given by <math style="vertical-align: 0px">h=e^x-ex</math>.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, the volume of the solid is
 
|-
 
|
 
::<math style="vertical-align: -14px">\int 2\pi rh\,dx\,=\,\int_0^1 2\pi x(e^x-ex)\,dx.</math>
 
|}
 
 
 
'''(c)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We need to integrate
 
|-
 
|
 
::<math>\int_0^1 2\pi x(e^x-ex)\,dx\,=\,2\pi\int_0^1 xe^x\,dx-2\pi\int_0^1ex^2\,dx.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Final 1, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|For the first integral, we need to use integration by parts.
 
|-
 
|Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^xdx</math>. Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=e^x</math>.
 
|-
 
|So, the integral becomes
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^1 2\pi x(e^x-ex)~dx} & = & \displaystyle{2\pi\bigg(xe^x\bigg|_0^1 -\int_0^1 e^xdx\bigg)-\frac{2\pi ex^3}{3}\bigg|_0^1}\\
 
&&\\
 
& = & \displaystyle{2\pi\bigg(xe^x-e^x\bigg)\bigg|_0^1-\frac{2\pi e}{3}}\\
 
&&\\
 
& = & \displaystyle{2\pi(e-e-(-1))-\frac{2\pi e}{3}}\\
 
&&\\
 
& = & \displaystyle{2\pi-\frac{2\pi e}{3}}.\\
 
\end{array}</math>
 
|}
 
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' &nbsp;<math style="vertical-align: -5px">(1,e)</math> (See Step 1 for the graph)
 
|-
 
|'''(b)''' &nbsp;<math style="vertical-align: -15px">\int_0^1 2\pi x(e^x-ex)~dx</math>
 
|-
 
|'''(c)''' &nbsp;<math style="vertical-align: -14px">2\pi-\frac{2\pi e}{3}</math>
 
|}
 
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:17, 2 December 2017

The region bounded by the parabola    and the line    in the first quadrant is revolved about the  -axis to generate a solid.

(a) Sketch the region bounded by the given functions and find their points of intersection.

(b) Set up the integral for the volume of the solid.

(c) Find the volume of the solid by computing the integral.


Solution


Detailed Solution


Return to Sample Exam