Difference between revisions of "009A Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Calculate the equation of the tangent line to the curve defined by <math>x^3+y^3=2xy</math> at the point, <math>(1,1).</math>
+
<span class="exam"> Calculate the equation of the tangent line to the curve defined by &nbsp;<math style="vertical-align: -4px">x^3+y^3=2xy</math>&nbsp; at the point, &nbsp;<math style="vertical-align: -5px">(1,1).</math>
 +
<hr>
 +
[[009A Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
 +
[[009A Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:40, 2 December 2017

Calculate the equation of the tangent line to the curve defined by    at the point,  


Solution


Detailed Solution


Return to Sample Exam