Difference between revisions of "8A F11 Q17"
Jump to navigation
Jump to search
(Created page with "'''Question: ''' Compute the following trig ratios: a) <math> \sec \frac{3\pi}{4}</math> b) <math> \tan \frac{11\pi}{6}</math> c) <m...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 13: | Line 13: | ||
|2) a) Quadrant 2, b) Quadrant 4, c) Quadrant 3. The reference angles are: <math> \frac{\pi}{4}, \frac{\pi}{6}</math>, and 60 degrees or <math>\frac{\pi}{3}</math> | |2) a) Quadrant 2, b) Quadrant 4, c) Quadrant 3. The reference angles are: <math> \frac{\pi}{4}, \frac{\pi}{6}</math>, and 60 degrees or <math>\frac{\pi}{3}</math> | ||
+ | |} | ||
Solution: | Solution: | ||
Line 32: | Line 33: | ||
|Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or <math>\frac{\pi}{3}</math>, So <math> sin(-120) = \frac{\sqrt{3}}{2}</math> | |Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or <math>\frac{\pi}{3}</math>, So <math> sin(-120) = \frac{\sqrt{3}}{2}</math> | ||
|} | |} | ||
+ | |||
+ | [[8AF11Final|<u>'''Return to Sample Exam</u>''']] |
Latest revision as of 16:01, 6 April 2015
Question: Compute the following trig ratios: a) b) c)
Foundations | |
---|---|
1) How is secant related to either sine or cosine? | |
2) What quadrant is each angle in? What is the reference angle for each? | Answer: |
1) | |
2) a) Quadrant 2, b) Quadrant 4, c) Quadrant 3. The reference angles are: , and 60 degrees or |
Solution:
Final Answer A: |
---|
Since , and the angle is in quadrant 2, |
Final Answer B: |
---|
The reference angle is and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that |
Final Answer C: |
---|
Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or , So |