Difference between revisions of "009A Sample Midterm 1"
Kayla Murray (talk | contribs) (→ Problem 5 ) |
Kayla Murray (talk | contribs) (→ Problem 2 ) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<span class="exam"> Find the following limits: | <span class="exam"> Find the following limits: | ||
− | <span class="exam">(a) Find <math style="vertical-align: -13px">\lim _{x\rightarrow 2} g(x),</math> provided that <math style="vertical-align: -15px">\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5</math> | + | <span class="exam">(a) Find <math style="vertical-align: -13px">\lim _{x\rightarrow 2} g(x),</math> provided that <math style="vertical-align: -15px">\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5.</math> |
− | <span class="exam">(b) Find <math style="vertical-align: -14px">\lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} </math> | + | <span class="exam">(b) Find <math style="vertical-align: -14px">\lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} </math> |
− | <span class="exam">(c) Evaluate <math style="vertical-align: -14px">\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math> | + | <span class="exam">(c) Evaluate <math style="vertical-align: -14px">\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math> |
== [[009A_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009A_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
− | <span class="exam">Consider the following function <math style="vertical-align: -5px"> f:</math> | + | <span class="exam">Suppose the size of a population at time <math style="vertical-align: 0px">t</math> is given by |
+ | |||
+ | ::<math>N(t)=\frac{1000t}{5+t},~t\ge 0.</math> | ||
+ | |||
+ | <span class="exam">(a) Determine the size of the population as <math style="vertical-align: -1px">t\rightarrow \infty.</math> We call this the limiting population size. | ||
+ | |||
+ | <span class="exam">(b) Show that at time <math style="vertical-align: -4px">t=5,</math> the size of the population is half its limiting size. | ||
+ | |||
+ | == [[009A_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
+ | <span class="exam">Consider the following function <math style="vertical-align: -5px"> f:</math> | ||
::<math>f(x) = \left\{ | ::<math>f(x) = \left\{ | ||
\begin{array}{lr} | \begin{array}{lr} | ||
Line 23: | Line 32: | ||
</math> | </math> | ||
− | <span class="exam">(a) Find <math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math> | + | <span class="exam">(a) Find <math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math> |
− | <span class="exam">(b) Find <math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math> | + | <span class="exam">(b) Find <math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math> |
− | <span class="exam">(c) Find <math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math> | + | <span class="exam">(c) Find <math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math> |
− | <span class="exam">(d) Is <math style="vertical-align: -5px">f</math> continuous at <math style="vertical-align: -1px">x=1?</math> Briefly explain. | + | <span class="exam">(d) Is <math style="vertical-align: -5px">f</math> continuous at <math style="vertical-align: -1px">x=1?</math> Briefly explain. |
− | == [[009A_Sample Midterm 1, | + | == [[009A_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == |
− | <span class="exam"> Let <math style="vertical-align: -5px">y=\sqrt{3x-5}.</math> | + | <span class="exam"> Let <math style="vertical-align: -5px">y=\sqrt{3x-5}.</math> |
− | <span class="exam">(a) Use the definition of the derivative to compute <math>\frac{dy}{dx}</math> for <math style="vertical-align: -5px">y=\sqrt{3x-5}.</math> | + | <span class="exam">(a) Use the definition of the derivative to compute <math>\frac{dy}{dx}</math> for <math style="vertical-align: -5px">y=\sqrt{3x-5}.</math> |
− | <span class="exam">(b) Find the equation of the tangent line to <math style="vertical-align: -5px">y=\sqrt{3x-5}</math> at <math style="vertical-align: -5px">(2,1).</math> | + | <span class="exam">(b) Find the equation of the tangent line to <math style="vertical-align: -5px">y=\sqrt{3x-5}</math> at <math style="vertical-align: -5px">(2,1).</math> |
− | == [[009A_Sample Midterm 1, | + | == [[009A_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == |
<span class="exam"> Find the derivatives of the following functions. Do not simplify. | <span class="exam"> Find the derivatives of the following functions. Do not simplify. | ||
Line 46: | Line 55: | ||
<span class="exam">(c) <math style="vertical-align: -20px">h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> | <span class="exam">(c) <math style="vertical-align: -20px">h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 07:58, 3 November 2017
This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Find the following limits:
(a) Find provided that
(b) Find
(c) Evaluate
Problem 2
Suppose the size of a population at time is given by
(a) Determine the size of the population as We call this the limiting population size.
(b) Show that at time the size of the population is half its limiting size.
Problem 3
Consider the following function
(a) Find
(b) Find
(c) Find
(d) Is continuous at Briefly explain.
Problem 4
Let
(a) Use the definition of the derivative to compute for
(b) Find the equation of the tangent line to at
Problem 5
Find the derivatives of the following functions. Do not simplify.
(a)
(b) where
(c)