Difference between revisions of "009C Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Consider the function
 
<span class="exam"> Consider the function
  
::::<math>f(x)=e^{-\frac{1}{3}x}</math>
+
::<math>f(x)=e^{-\frac{1}{3}x}.</math>
  
::<span class="exam">a) Find a formula for the <math>n</math>th derivative <math>f^{(n)}(x)</math> of <math>f</math> and then find <math>f'(3).</math>
+
<span class="exam">(a) Find a formula for the &nbsp;<math>n</math>th derivative &nbsp;<math style="vertical-align: -5px">f^{(n)}(x)</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and then find &nbsp;<math style="vertical-align: -5px">f'(3).</math>
  
::<span class="exam">b) Find the Taylor series for <math>f(x)</math> at <math>x_0=3,</math> i.e. write <math>f(x)</math> in the form  
+
<span class="exam">(b) Find the Taylor series for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">x_0=3,</math>&nbsp; i.e. write &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; in the form  
  
::::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
+
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009C Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)'''
 
|-
 
|&nbsp;&nbsp; '''(b)'''
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:20, 3 December 2017

Consider the function

(a) Find a formula for the  th derivative    of    and then find  

(b) Find the Taylor series for    at    i.e. write    in the form


Solution


Detailed Solution


Return to Sample Exam