Difference between revisions of "009B Sample Final 3"

From Grad Wiki
Jump to navigation Jump to search
 
(16 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
== [[009B_Sample Final 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009B_Sample Final 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">Divide the interval <math>[-1,1]</math> into four subintervals of equal length <math>\frac{1}{2}</math> and compute the left-endpoint Riemann sum of <math>y=1-x^2.</math>
+
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[-1,1]</math>&nbsp; into four subintervals of equal length &nbsp;<math style="vertical-align: -14px">\frac{1}{2}</math>&nbsp; and compute the left-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=1-x^2.</math>
  
 
== [[009B_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009B_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Evaluate the following integrals.  
 
<span class="exam"> Evaluate the following integrals.  
  
::<span class="exam">a) <math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math>
+
<span class="exam">(a) &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math>
  
::<span class="exam">b) <math>\int \frac{x^2}{(1+x^3)^2}</math>
+
<span class="exam">(b) &nbsp;<math>\int \frac{x^2}{(1+x^3)^2}~dx</math>
  
::<span class="exam">c) <math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
+
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
  
 
== [[009B_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009B_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam">Consider the area bounded by the following two functions:
+
<span class="exam">The population density of trout in a stream is
::::::<span class="exam"><math style="vertical-align: -4px">y=\sin x</math> and <math style="vertical-align: -13px">y=\frac{2}{\pi}x</math>.
 
  
<span class="exam">a) Find the three intersection points of the two given functions. (Drawing may be helpful.)
+
::<math>\rho(x)=|-x^2+6x+16|</math>
  
<span class="exam">b) Find the area bounded by the two functions.
+
<span class="exam">where &nbsp;<math style="vertical-align: -5px">\rho</math>&nbsp; is measured in trout per mile and &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is measured in miles. &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; runs from 0 to 12.
  
== [[009B_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
<span class="exam">(a) Graph &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; and find the minimum and maximum.
<span class="exam"> Compute the following integrals.
 
  
<span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math>
+
<span class="exam">(b) Find the total number of trout in the stream.
  
<span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
+
== [[009B_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
+
<span class="exam"> Find the volume of the solid obtained by rotating about the &nbsp;<math>x</math>-axis the region bounded by &nbsp;<math style="vertical-align: -4px">y=\sqrt{1-x^2}</math>&nbsp; and &nbsp;<math>y=0.</math>
<span class="exam">c) <math>\int \sin^3x~dx</math>
 
  
 
== [[009B_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009B_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> Consider the solid obtained by rotating the area bounded by the following three functions about the <math style="vertical-align: -3px">y</math>-axis:
+
<span class="exam"> Find the following integrals.
  
::::::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>.
+
<span class="exam">(a) &nbsp;<math>\int x\cos(x)~dx</math>  
  
<span class="exam">a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
+
<span class="exam">(b) &nbsp;<math>\int \sin^3(x)\cos^2(x)~dx</math>
 
 
:<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.)
 
 
 
<span class="exam">b) Set up the integral for the volume of the solid.
 
 
 
<span class="exam">c) Find the volume of the solid by computing the integral.
 
  
 
== [[009B_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[009B_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Evaluate the improper integrals:
+
<span class="exam"> Find the following integrals
  
<span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math>
+
<span class="exam">(a) &nbsp;<math>\int \frac{3x-1}{2x^2-x}~dx</math>
  
<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
+
<span class="exam">(b) &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx</math>
  
 
== [[009B_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 
== [[009B_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
<span class="exam">a) Find the length of the curve
+
<span class="exam">Does the following integral converge or diverge? Prove your answer!
 
 
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
 
 
 
<span class="exam">b) The curve
 
 
 
::::::<math>y=1-x^2,~~~0\leq x \leq 1</math>
 
  
<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
+
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>

Latest revision as of 16:23, 1 March 2017

This is a sample, and is meant to represent the material usually covered in Math 9B for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Divide the interval    into four subintervals of equal length    and compute the left-endpoint Riemann sum of  

 Problem 2 

Evaluate the following integrals.

(a)  

(b)  

(c)  

 Problem 3 

The population density of trout in a stream is

where    is measured in trout per mile and    is measured in miles.    runs from 0 to 12.

(a) Graph    and find the minimum and maximum.

(b) Find the total number of trout in the stream.

 Problem 4 

Find the volume of the solid obtained by rotating about the  -axis the region bounded by    and  

 Problem 5 

Find the following integrals.

(a)  

(b)  

 Problem 6 

Find the following integrals

(a)  

(b)  

 Problem 7 

Does the following integral converge or diverge? Prove your answer!