Difference between revisions of "009B Sample Final 2"

From Grad Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
== [[009B_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009B_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
::<span class="exam">a) State '''both parts''' of the Fundamental Theorem of Calculus.
+
<span class="exam">(a) State '''both parts''' of the Fundamental Theorem of Calculus.
  
::<span class="exam">b) Evaluate the integral
+
<span class="exam">(b) Evaluate the integral
  
::::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
+
::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
  
::<span class="exam">c) Compute
+
<span class="exam">(c) Compute
  
::::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
+
::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
  
 
== [[009B_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009B_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> Find the area of the region between the two curves <math>y=3x-x^2</math> and <math>y=2x^3-x^2-5x.</math>
+
<span class="exam"> Find the area of the region between the two curves &nbsp;<math style="vertical-align: -4px">y=3x-x^2</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">y=2x^3-x^2-5x.</math>
  
 
== [[009B_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009B_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam">Consider the area bounded by the following two functions:
+
<span class="exam">Find the volume of the solid obtained by rotating the region bounded by the curves &nbsp;<math style="vertical-align: -4px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; about the line &nbsp;<math>y=2.</math>
::::::<span class="exam"><math style="vertical-align: -4px">y=\sin x</math> and <math style="vertical-align: -13px">y=\frac{2}{\pi}x</math>.
 
 
 
<span class="exam">a) Find the three intersection points of the two given functions. (Drawing may be helpful.)
 
 
 
<span class="exam">b) Find the area bounded by the two functions.
 
  
 
== [[009B_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009B_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> Compute the following integrals.
+
<span class="exam"> A city bordered on one side by a lake can be approximated by a semicircle of radius 7 miles, whose city center is on the shoreline. As we move away from the center along a radius the population density of the city can be approximated by:
 
 
<span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math>
 
  
<span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
+
::<math>\rho(x)=25000e^{-0.15x}</math>
  
<span class="exam">c) <math>\int \sin^3x~dx</math>
+
<span class="exam">people per square mile. What is the population of the city?
  
 
== [[009B_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009B_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> Consider the solid obtained by rotating the area bounded by the following three functions about the <math style="vertical-align: -3px">y</math>-axis:
+
<span class="exam">(a) Find the area of the surface obtained by rotating the arc of the curve
  
::::::<span class="exam"> <math style="vertical-align: 0px">x=0</math>, <math style="vertical-align: -4px">y=e^x</math>, and <math style="vertical-align: -4px">y=ex</math>.
+
::<math>y^3=x</math>
  
<span class="exam">a) Sketch the region bounded by the given three functions. Find the intersection point of the two functions:
+
<span class="exam">between &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; about the &nbsp;<math style="vertical-align: -4px">y</math>-axis.
  
:<span class="exam"><math style="vertical-align: -4px">y=e^x</math> and <math style="vertical-align: -4px">y=ex</math>. (There is only one.)
+
<span class="exam">(b) Find the length of the arc
  
<span class="exam">b) Set up the integral for the volume of the solid.
+
::<math>y=1+9x^{\frac{3}{2}}</math>
  
<span class="exam">c) Find the volume of the solid by computing the integral.
+
<span class="exam">between the points &nbsp;<math style="vertical-align: -5px">(1,10)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(4,73).</math>
  
 
== [[009B_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[009B_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Evaluate the improper integrals:
+
<span class="exam"> Evaluate the following integrals:
 +
 
 +
<span class="exam">(a) &nbsp;<math>\int \frac{dx}{x^2\sqrt{x^2-16}}</math>
  
<span class="exam">a) <math>\int_0^{\infty} xe^{-x}~dx</math>
+
<span class="exam">(b) &nbsp;<math>\int_{-\pi}^\pi \sin^3x\cos^3x~dx</math>
  
<span class="exam">b) <math>\int_1^4 \frac{dx}{\sqrt{4-x}}</math>
+
<span class="exam">(c) &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx</math>
  
 
== [[009B_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 
== [[009B_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
<span class="exam">a) Find the length of the curve
+
<span class="exam">Evaluate the following integrals or show that they are divergent:
 
 
::::::<math>y=\ln (\cos x),~~~0\leq x \leq \frac{\pi}{3}</math>.
 
 
 
<span class="exam">b) The curve
 
  
::::::<math>y=1-x^2,~~~0\leq x \leq 1</math>
+
<span class="exam">(a) &nbsp;<math>\int_1^\infty \frac{\ln x}{x^4}~dx</math>
  
<span class="exam">is rotated about the <math style="vertical-align: -3px">y</math>-axis. Find the area of the resulting surface.
+
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>

Latest revision as of 14:32, 12 March 2017

This is a sample, and is meant to represent the material usually covered in Math 9B for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

 Problem 2 

Find the area of the region between the two curves    and  

 Problem 3 

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  

 Problem 4 

A city bordered on one side by a lake can be approximated by a semicircle of radius 7 miles, whose city center is on the shoreline. As we move away from the center along a radius the population density of the city can be approximated by:

people per square mile. What is the population of the city?

 Problem 5 

(a) Find the area of the surface obtained by rotating the arc of the curve

between    and    about the  -axis.

(b) Find the length of the arc

between the points    and  

 Problem 6 

Evaluate the following integrals:

(a)  

(b)  

(c)  

 Problem 7 

Evaluate the following integrals or show that they are divergent:

(a)  

(b)