Difference between revisions of "009B Sample Final 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the region bounded by the following two functions: ::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math styl...") |
Kayla Murray (talk | contribs) |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">The population density of trout in a stream is |
− | |||
− | < | + | ::<math>\rho(x)=|-x^2+6x+16|</math> |
− | <span class="exam"> | + | <span class="exam">where <math style="vertical-align: -5px">\rho</math> is measured in trout per mile and <math style="vertical-align: 0px">x</math> is measured in miles. <math style="vertical-align: 0px">x</math> runs from 0 to 12. |
− | <span class="exam"> | + | <span class="exam">(a) Graph <math style="vertical-align: -5px">\rho(x)</math> and find the minimum and maximum. |
+ | |||
+ | <span class="exam">(b) Find the total number of trout in the stream. | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |What is the relationship between population density <math style="vertical-align: -5px">\rho(x)</math> and the total populations? |
− | |||
− | |||
|- | |- | ||
− | | | + | | The total population is equal to <math style="vertical-align: -15px">\int_a^b \rho(x)~dx</math> |
|- | |- | ||
− | | | + | | for appropriate choices of <math style="vertical-align: -5px">a,b.</math> |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 27: | Line 27: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To graph <math style="vertical-align: -5px">\rho(x),</math> we need to find out when <math style="vertical-align: -2px">-x^2+6x+16</math> is negative. |
+ | |- | ||
+ | |To do this, we set | ||
+ | |- | ||
+ | | <math>-x^2+6x+16=0.</math> | ||
+ | |- | ||
+ | |So, we have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{0} & = & \displaystyle{-x^2+6x+16}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-(x^2-6x-16)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-(x+2)(x-8).} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, we get <math style="vertical-align: 0px">x=-2</math> and <math style="vertical-align: 0px">x=8.</math> | ||
+ | |- | ||
+ | |But, <math style="vertical-align: 0px">x=-2</math> is outside of the domain of <math style="vertical-align: -5px">\rho(x).</math> | ||
+ | |- | ||
+ | |Using test points, we can see that <math style="vertical-align: -2px">-x^2+6x+16</math> is positive in the interval <math style="vertical-align: -5px">[0,8]</math> | ||
+ | |- | ||
+ | |and negative in the interval <math style="vertical-align: -5px">[8,12].</math> | ||
|- | |- | ||
− | | | + | |Hence, we have |
|- | |- | ||
− | | | + | | <math>\rho(x) = \left\{ |
+ | \begin{array}{lr} | ||
+ | -x^2+6x+16 & \text{if }0\le x \le 8\\ | ||
+ | x^2-6x-16 & \text{if }8<x\le 12 | ||
+ | \end{array} | ||
+ | \right. | ||
+ | </math> | ||
|- | |- | ||
− | | | + | |The graph of <math style="vertical-align: -5px">\rho(x)</math> is displayed below. |
|} | |} | ||
Line 39: | Line 67: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We need to find the absolute maximum and minimum of <math style="vertical-align: -5px">\rho(x).</math> |
+ | |- | ||
+ | |We begin by finding the critical points of | ||
+ | |- | ||
+ | | <math style="vertical-align: -2px">-x^2+6x+16.</math> | ||
+ | |- | ||
+ | |Taking the derivative, we get | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -2px">-2x+6.</math> |
|- | |- | ||
− | | | + | |Solving <math style="vertical-align: -4px">-2x+6=0,</math> we get a critical point at |
|- | |- | ||
− | | | + | | <math style="vertical-align: 0px">x=3.</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Now, we calculate <math style="vertical-align: -5px">\rho(0),~\rho(3),~\rho(12).</math> |
|- | |- | ||
− | | | + | |We have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\rho(0)=16,~\rho(3)=25,~\rho(12)=56.</math> |
|- | |- | ||
− | | | + | |Therefore, the minimum of <math style="vertical-align: -5px">\rho(x)</math> is <math style="vertical-align: -1px">16</math> and the maximum of <math style="vertical-align: -5px">\rho(x)</math> is <math style="vertical-align: -1px">56.</math> |
|} | |} | ||
− | '''( | + | '''(b)''' |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To calculate the total number of trout, we need to find |
+ | |- | ||
+ | | <math> \int_0^{12} \rho(x)~dx.</math> | ||
|- | |- | ||
− | | | + | |Using the information from Step 1 of (a), we have |
+ | |- | ||
+ | | <math> \int_0^{12} \rho(x)~dx=\int_0^8 (-x^2+6x+16)~dx+\int_8^{12} (x^2-6x-16)~dx.</math> | ||
|} | |} | ||
Line 79: | Line 107: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |We integrate to get |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int_0^{12} \rho(x)~dx} & = & \displaystyle{\bigg(\frac{-x^3}{3}+3x^2+16x\bigg)\bigg|_0^8+\bigg(\frac{x^3}{3}-3x^2-16x\bigg)\bigg|_8^{12}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\bigg(\frac{-8^3}{3}+3(8)^2+16(8)\bigg)-0+\bigg(\frac{(12)^3}{3}-3(12)^2-16(12)\bigg)-\bigg(\frac{8^3}{3}-3(8)^2-16(8)\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{8\bigg(\frac{56}{3}\bigg)+12\bigg(\frac{12}{3}\bigg)+8\bigg(\frac{56}{3}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{752}{3}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Thus, there are approximately <math style="vertical-align: -1px">251</math> trout. | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' The minimum of <math style="vertical-align: -5px">\rho(x)</math> is <math style="vertical-align: -1px">16</math> and the maximum of <math style="vertical-align: -5px">\rho(x)</math> is <math style="vertical-align: -1px">56.</math> (See above for graph.) |
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' There are approximately <math style="vertical-align: -1px">251</math> trout. |
|- | |- | ||
− | | | + | | |
|} | |} | ||
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 14:46, 12 March 2017
The population density of trout in a stream is
where is measured in trout per mile and is measured in miles. runs from 0 to 12.
(a) Graph and find the minimum and maximum.
(b) Find the total number of trout in the stream.
Foundations: |
---|
What is the relationship between population density and the total populations? |
The total population is equal to |
for appropriate choices of |
Solution:
(a)
Step 1: |
---|
To graph we need to find out when is negative. |
To do this, we set |
So, we have |
Hence, we get and |
But, is outside of the domain of |
Using test points, we can see that is positive in the interval |
and negative in the interval |
Hence, we have |
The graph of is displayed below. |
Step 2: |
---|
We need to find the absolute maximum and minimum of |
We begin by finding the critical points of |
Taking the derivative, we get |
Solving we get a critical point at |
Now, we calculate |
We have |
Therefore, the minimum of is and the maximum of is |
(b)
Step 1: |
---|
To calculate the total number of trout, we need to find |
Using the information from Step 1 of (a), we have |
Step 2: |
---|
We integrate to get |
Thus, there are approximately trout. |
Final Answer: |
---|
(a) The minimum of is and the maximum of is (See above for graph.) |
(b) There are approximately trout. |