Difference between revisions of "009A Sample Final 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason. | <span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason. | ||
− | + | <span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math> | |
− | + | <span class="exam">(b) <math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x),</math> given that <math style="vertical-align: -14px">\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math> | |
− | + | <span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math> | |
+ | <hr> | ||
+ | [[009A Sample Final 3, Problem 1 Solution|'''<u>Solution</u>''']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''Solution | + | [[009A Sample Final 3, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 16:32, 2 December 2017
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b) given that
(c)