Difference between revisions of "009A Sample Final 3"

From Grad Wiki
Jump to navigation Jump to search
 
(24 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
 
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
  
::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math>
  
::<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 8} f(x),</math> given that <math>\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x),</math>&nbsp; given that &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math>
  
::<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math>
+
<span class="exam">(c) &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math>
  
 
== [[009A_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> Find the derivative of the following functions:
 
<span class="exam"> Find the derivative of the following functions:
  
<span class="exam">a) <math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -18px">g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math>
  
<span class="exam">b) <math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -5px">y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math>
  
 
== [[009A_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
Line 26: Line 26:
  
 
== [[009A_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> Discuss, without graphing, if the following function is continuous at <math>x=0.</math>
+
<span class="exam"> Discuss, without graphing, if the following function is continuous at &nbsp;<math style="vertical-align: 0px">x=0.</math>
  
 
::<math>f(x) = \left\{
 
::<math>f(x) = \left\{
Line 37: Line 37:
 
</math>
 
</math>
  
<span class="exam">If you think <math>f</math> is not continuous at <math>x=0,</math> what kind of discontinuity is it?
+
<span class="exam">If you think &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: -4px">x=0,</math>&nbsp; what kind of discontinuity is it?
  
 
== [[009A_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?
+
<span class="exam"> Calculate the equation of the tangent line to the curve defined by &nbsp;<math style="vertical-align: -4px">x^3+y^3=2xy</math>&nbsp; at the point, &nbsp;<math style="vertical-align: -5px">(1,1).</math>
  
 
== [[009A_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_6|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 6&nbsp;</span>]] ==
<span class="exam"> Consider the following function:
+
<span class="exam"> Let
  
::::::<math>f(x)=3x-2\sin x+7</math>
+
::<math>f(x)=4+8x^3-x^4</math>
  
<span class="exam">a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -5px">f(x)</math> has at least one zero.
+
<span class="exam">(a) Over what &nbsp;<math style="vertical-align: 0px">x</math>-intervals is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; increasing/decreasing?
  
<span class="exam">b) Use the Mean Value Theorem to show that <math style="vertical-align: -5px">f(x)</math> has at most one zero.
+
<span class="exam">(b) Find all critical points of &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; and test each for local maximum and local minimum.
 +
 
 +
<span class="exam">(c) Over what &nbsp;<math style="vertical-align: 0px">x</math>-intervals is &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; concave up/down?
 +
 
 +
<span class="exam">(d) Sketch the shape of the graph of &nbsp;<math style="vertical-align: -4px">f.</math>
  
 
== [[009A_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_7|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 7&nbsp;</span>]] ==
  
<span class="exam">A curve is defined implicitly by the equation
+
<span class="exam">Compute
  
::::::<math>x^3+y^3=6xy.</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -18px">\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}</math>
  
<span class="exam">a) Using implicit differentiation, compute &thinsp;<math style="vertical-align: -12px">\frac{dy}{dx}</math>.
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -16px">\lim_{x\rightarrow \pi} \frac{\sin x}{\pi-x}</math>
  
<span class="exam">b) Find an equation of the tangent line to the curve <math style="vertical-align: -4px">x^3+y^3=6xy</math> at the point <math style="vertical-align: -5px">(3,3)</math>.
+
<span class="exam">(c) &nbsp;<math style="vertical-align: -16px">\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}</math>
  
 
== [[009A_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_8|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 8&nbsp;</span>]] ==
  
<span class="exam">Let
+
<span class="exam">If &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; denotes the weight in pounds of an individual, and &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; denotes the time in months, then &nbsp;<math style="vertical-align: -13px">\frac{dW}{dt}</math>&nbsp; is the rate of weight gain or loss in lbs/mo. The current speed record for weight loss is a drop in weight from 487 pounds to 130 pounds over an eight month period. Show that the rate of weight loss exceeded 44 lbs/mo at some time during the eight month period.
 
 
::::::<math>y=x^3.</math>
 
 
 
<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
 
 
 
<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -1px">1.9^3</math>.
 
  
 
== [[009A_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_9|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 9&nbsp;</span>]] ==
  
<span class="exam">Given the function <math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>,
+
<span class="exam">Let
 
 
<span class="exam">a) Find the intervals in which the function increases or decreases.
 
 
 
<span class="exam">b) Find the local maximum and local minimum values.
 
  
<span class="exam">c) Find the intervals in which the function concaves upward or concaves downward.
+
::<math>g(x)=(2x^2-8x)^{\frac{2}{3}}</math>
  
<span class="exam">d) Find the inflection point(s).
+
<span class="exam">(a) Find all critical points of &nbsp;<math style="vertical-align: -4px">g</math>&nbsp; over the &nbsp;<math style="vertical-align: 0px">x</math>-interval &nbsp;<math style="vertical-align: -5px">[0,8].</math>
  
<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math style="vertical-align: -5px">y=f(x)</math>.
+
<span class="exam">(b) Find absolute maximum and absolute minimum of &nbsp;<math style="vertical-align: -4px">g</math>&nbsp; over &nbsp;<math style="vertical-align: -5px">[0,8].</math>
  
 
== [[009A_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
 
== [[009A_Sample Final 3,_Problem_10|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 10&nbsp;</span>]] ==
  
<span class="exam">Consider the following continuous function:
+
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\tan(x).</math>
::::::<math>f(x)=x^{1/3}(x-8)</math>
 
 
 
<span class="exam">defined on the closed, bounded interval <math style="vertical-align: -5px">[-8,8]</math>.
 
  
<span class="exam">a) Find all the critical points for <math style="vertical-align: -5px">f(x)</math>.
+
<span class="exam">(a) Find the differential &nbsp;<math style="vertical-align: -4px">dy</math>&nbsp; of &nbsp;<math style="vertical-align: -5px">y=\tan (x)</math>&nbsp; at &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}.</math>
  
<span class="exam">b) Determine the absolute maximum and absolute minimum values for <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[-8,8]</math>.
+
<span class="exam">(b) Use differentials to find an approximate value for &nbsp;<math style="vertical-align: -5px">\tan(0.885).</math>&nbsp; Hint: &nbsp;<math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math>

Latest revision as of 16:56, 2 December 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  

 Problem 2 

Find the derivative of the following functions:

(a)  

(b)  

 Problem 3 

Find the derivative of the following function using the limit definition of the derivative:

 Problem 4 

Discuss, without graphing, if the following function is continuous at  

If you think    is not continuous at    what kind of discontinuity is it?

 Problem 5 

Calculate the equation of the tangent line to the curve defined by    at the point,  

 Problem 6 

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  

 Problem 7 

Compute

(a)  

(b)  

(c)  

 Problem 8 

If    denotes the weight in pounds of an individual, and    denotes the time in months, then    is the rate of weight gain or loss in lbs/mo. The current speed record for weight loss is a drop in weight from 487 pounds to 130 pounds over an eight month period. Show that the rate of weight loss exceeded 44 lbs/mo at some time during the eight month period.

 Problem 9 

Let

(a) Find all critical points of    over the  -interval  

(b) Find absolute maximum and absolute minimum of    over  

 Problem 10 

Let  

(a) Find the differential    of    at  

(b) Use differentials to find an approximate value for    Hint: