Difference between revisions of "009A Sample Final 2"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(27 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
== [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | == [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Compute |
− | <span class="exam">a) <math style="vertical-align: - | + | <span class="exam">(a) <math style="vertical-align: -15px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math> |
− | <span class="exam">b) <math style="vertical-align: - | + | <span class="exam">(b) <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin^2x}{3x}</math> |
− | <span class="exam">c) <math style="vertical-align: - | + | <span class="exam">(c) <math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math> |
== [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Let |
− | + | ::<math>f(x) = \left\{ | |
\begin{array}{lr} | \begin{array}{lr} | ||
− | x | + | \frac{x^2-2x-3}{x-3} & \text{if }x \ne 3\\ |
− | + | 5 & \text{if }x = 3 | |
\end{array} | \end{array} | ||
\right. | \right. | ||
</math> | </math> | ||
− | <span class="exam"> | + | <span class="exam"> For what values of <math style="vertical-align: 0px">x</math> is <math style="vertical-align: -4px">f</math> continuous? |
− | <span class=" | + | == [[009A_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == |
+ | <span class="exam">Compute <math>\frac{dy}{dx}.</math> | ||
− | + | <span class="exam">(a) <math style="vertical-align: -15px">y=\bigg(\frac{x^2+3}{x^2-1}\bigg)^3</math> | |
− | |||
− | <span class="exam"> | + | <span class="exam">(b) <math style="vertical-align: -4px">y=x\cos(\sqrt{x+1})</math> |
− | <span class="exam"> | + | <span class="exam">(c) <math style="vertical-align: -5px">y=\sin^{-1} x</math> |
== [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | == [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Use implicit differentiation to find an equation of the tangent line to the curve at the given point. |
− | |||
− | |||
− | <span class="exam"> | + | ::<span class="exam"><math style="vertical-align: -4px">3x^2+xy+y^2=5</math> at the point <math style="vertical-align: -5px">(1,-2)</math> |
== [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
− | <span class="exam"> A | + | <span class="exam"> A lighthouse is located on a small island 3km away from the nearest point <math style="vertical-align: 0px">P</math> on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from <math style="vertical-align: 0px">P?</math> |
== [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | == [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Find the absolute maximum and absolute minimum values of the function |
− | + | ::<math>f(x)=\frac{1-x}{1+x}</math> | |
− | <span class="exam"> | + | <span class="exam">on the interval <math style="vertical-align: -5px">[0,2].</math> |
− | |||
− | |||
== [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam"> Show that the equation <math style="vertical-align: -2px">x^3+2x-2=0</math> has exactly one real root. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | == [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">Compute |
− | + | <span class="exam">(a) <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}</math> | |
− | <span class="exam"> | + | <span class="exam">(b) <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}</math> |
− | <span class="exam"> | + | <span class="exam">(c) <math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math> |
== [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
− | <span class="exam"> | + | <span class="exam">A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour. |
− | <span class=" | + | == [[009A_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == |
− | |||
− | <span | ||
− | |||
− | <span | ||
− | |||
− | |||
− | <span class="exam"> | + | <span class="exam">Let |
− | + | ::<math>f(x)=\frac{4x}{x^2+1}.</math> | |
− | = | ||
− | <span class="exam"> | + | <span class="exam">(a) Find all local maximum and local minimum values of <math style="vertical-align: -4px">f,</math> find all intervals where <math style="vertical-align: -4px">f</math> is increasing and all intervals where <math style="vertical-align: -4px">f</math> is decreasing. |
− | |||
− | <span class="exam"> | + | <span class="exam">(b) Find all inflection points of the function <math style="vertical-align: -4px">f,</math> find all intervals where the function <math style="vertical-align: -4px">f</math> is concave upward and all intervals where <math style="vertical-align: -4px">f</math> is concave downward. |
− | <span class="exam"> | + | <span class="exam">(c) Find all horizontal asymptotes of the graph <math style="vertical-align: -5px">y=f(x).</math> |
− | <span class="exam"> | + | <span class="exam">(d) Sketch the graph of <math style="vertical-align: -5px">y=f(x).</math> |
Latest revision as of 12:25, 2 December 2017
This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Compute
(a)
(b)
(c)
Problem 2
Let
For what values of is continuous?
Problem 3
Compute
(a)
(b)
(c)
Problem 4
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
- at the point
Problem 5
A lighthouse is located on a small island 3km away from the nearest point on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from
Problem 6
Find the absolute maximum and absolute minimum values of the function
on the interval
Problem 7
Show that the equation has exactly one real root.
Problem 8
Compute
(a)
(b)
(c)
Problem 9
A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour.
Problem 10
Let
(a) Find all local maximum and local minimum values of find all intervals where is increasing and all intervals where is decreasing.
(b) Find all inflection points of the function find all intervals where the function is concave upward and all intervals where is concave downward.
(c) Find all horizontal asymptotes of the graph
(d) Sketch the graph of