Difference between revisions of "009A Sample Final 2"
Kayla Murray (talk | contribs) (Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar. Click on the''' '''<span class=...") |
Kayla Murray (talk | contribs) |
||
| (28 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | '''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | + | '''This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.''' |
| + | |||
| + | '''Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' | ||
<div class="noautonum">__TOC__</div> | <div class="noautonum">__TOC__</div> | ||
== [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | == [[009A_Sample Final 2,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
| − | <span class="exam"> | + | <span class="exam">Compute |
| − | <span class="exam">a) <math style="vertical-align: - | + | <span class="exam">(a) <math style="vertical-align: -15px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math> |
| − | <span class="exam">b) <math style="vertical-align: - | + | <span class="exam">(b) <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin^2x}{3x}</math> |
| − | <span class="exam">c) <math style="vertical-align: - | + | <span class="exam">(c) <math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math> |
== [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | == [[009A_Sample Final 2,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam"> Let |
| − | + | ::<math>f(x) = \left\{ | |
\begin{array}{lr} | \begin{array}{lr} | ||
| − | x | + | \frac{x^2-2x-3}{x-3} & \text{if }x \ne 3\\ |
| − | + | 5 & \text{if }x = 3 | |
\end{array} | \end{array} | ||
\right. | \right. | ||
</math> | </math> | ||
| − | <span class="exam"> | + | <span class="exam"> For what values of <math style="vertical-align: 0px">x</math> is <math style="vertical-align: -4px">f</math> continuous? |
| − | <span class=" | + | == [[009A_Sample Final 2,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == |
| + | <span class="exam">Compute <math>\frac{dy}{dx}.</math> | ||
| − | + | <span class="exam">(a) <math style="vertical-align: -15px">y=\bigg(\frac{x^2+3}{x^2-1}\bigg)^3</math> | |
| − | |||
| − | <span class="exam"> | + | <span class="exam">(b) <math style="vertical-align: -4px">y=x\cos(\sqrt{x+1})</math> |
| − | <span class="exam"> | + | <span class="exam">(c) <math style="vertical-align: -5px">y=\sin^{-1} x</math> |
== [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | == [[009A_Sample Final 2,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam">Use implicit differentiation to find an equation of the tangent line to the curve at the given point. |
| − | :: | + | ::<span class="exam"><math style="vertical-align: -4px">3x^2+xy+y^2=5</math> at the point <math style="vertical-align: -5px">(1,-2)</math> |
| − | |||
| − | <span class="exam"> | ||
== [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | == [[009A_Sample Final 2,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
| − | <span class="exam"> A | + | <span class="exam"> A lighthouse is located on a small island 3km away from the nearest point <math style="vertical-align: 0px">P</math> on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from <math style="vertical-align: 0px">P?</math> |
== [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | == [[009A_Sample Final 2,_Problem_6|<span class="biglink"><span style="font-size:80%"> Problem 6 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam"> Find the absolute maximum and absolute minimum values of the function |
| − | + | ::<math>f(x)=\frac{1-x}{1+x}</math> | |
| − | <span class="exam"> | + | <span class="exam">on the interval <math style="vertical-align: -5px">[0,2].</math> |
| − | |||
| − | |||
== [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | == [[009A_Sample Final 2,_Problem_7|<span class="biglink"><span style="font-size:80%"> Problem 7 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam"> Show that the equation <math style="vertical-align: -2px">x^3+2x-2=0</math> has exactly one real root. |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
== [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | == [[009A_Sample Final 2,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam">Compute |
| − | + | <span class="exam">(a) <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}</math> | |
| − | <span class="exam"> | + | <span class="exam">(b) <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}</math> |
| − | <span class="exam"> | + | <span class="exam">(c) <math style="vertical-align: -15px">\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}</math> |
== [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[009A_Sample Final 2,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
| − | <span class="exam"> | + | <span class="exam">A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour. |
| − | <span class=" | + | == [[009A_Sample Final 2,_Problem_10|<span class="biglink"><span style="font-size:80%"> Problem 10 </span>]] == |
| − | |||
| − | <span | ||
| − | <span class="exam"> | + | <span class="exam">Let |
| − | + | ::<math>f(x)=\frac{4x}{x^2+1}.</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | = | ||
| − | <span class="exam"> | + | <span class="exam">(a) Find all local maximum and local minimum values of <math style="vertical-align: -4px">f,</math> find all intervals where <math style="vertical-align: -4px">f</math> is increasing and all intervals where <math style="vertical-align: -4px">f</math> is decreasing. |
| − | |||
| − | <span class="exam"> | + | <span class="exam">(b) Find all inflection points of the function <math style="vertical-align: -4px">f,</math> find all intervals where the function <math style="vertical-align: -4px">f</math> is concave upward and all intervals where <math style="vertical-align: -4px">f</math> is concave downward. |
| − | <span class="exam"> | + | <span class="exam">(c) Find all horizontal asymptotes of the graph <math style="vertical-align: -5px">y=f(x).</math> |
| − | <span class="exam"> | + | <span class="exam">(d) Sketch the graph of <math style="vertical-align: -5px">y=f(x).</math> |
Latest revision as of 11:25, 2 December 2017
This is a sample, and is meant to represent the material usually covered in Math 9A for the final. An actual test may or may not be similar.
Click on the boxed problem numbers to go to a solution.
Problem 1
Compute
(a)
(b)
(c)
Problem 2
Let
For what values of is continuous?
Problem 3
Compute
(a)
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=x\cos(\sqrt{x+1})}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sin^{-1} x}
Problem 4
Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3x^2+xy+y^2=5} at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1,-2)}
Problem 5
A lighthouse is located on a small island 3km away from the nearest point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P?}
Problem 6
Find the absolute maximum and absolute minimum values of the function
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{1-x}{1+x}}
on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [0,2].}
Problem 7
Show that the equation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3+2x-2=0} has exactly one real root.
Problem 8
Compute
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{x^{-1}+x}{1+\sqrt{1+x}}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{\cos x-1}}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}}
Problem 9
A plane begins its takeoff at 2:00pm on a 2500-mile flight. After 5.5 hours, the plane arrives at its destination. Give a precise mathematical reason using the mean value theorem to explain why there are at least two times during the flight when the speed of the plane is 400 miles per hour.
Problem 10
Let
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\frac{4x}{x^2+1}.}
(a) Find all local maximum and local minimum values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,} find all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is increasing and all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is decreasing.
(b) Find all inflection points of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,} find all intervals where the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is concave upward and all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is concave downward.
(c) Find all horizontal asymptotes of the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}
(d) Sketch the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}