Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Find the following limits:
+
<span class="exam"> Find the following limits:
  
::<span class="exam">a) If <math>\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math> find <math>\lim _{x\rightarrow 3} f(x).</math>
+
<span class="exam">(a) If &nbsp;<math style="vertical-align: -16px">\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</math>&nbsp; find &nbsp;<math style="vertical-align: -13px">\lim _{x\rightarrow 3} f(x).</math>
::<span class="exam">b) Find <math>\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math>
 
::<span class="exam">c) Evaluate <math>\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math>
 
  
 +
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\tan(4x)}{\sin(6x)}. </math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -16px">\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}. </math>
!Foundations: &nbsp;
 
|-
 
|'''1.''' Linearity rules of limits
 
|-
 
|'''2.''' lim sin(x)/x
 
|}
 
  
 +
<hr>
  
'''Solution:'''
+
[[009A Sample Midterm 3, Problem 1 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
  
'''(a)'''
+
[[File:9ASM3P1.jpg|600px|thumb|center]]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{2} & = & \displaystyle{\lim_{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}+\lim_{x\rightarrow 3} 1}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}+1.}
 
\end{array}</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} \frac{f(x)}{2x}=1.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:51, 6 November 2017

Find the following limits:

(a) If    find  

(b) Find  

(c) Evaluate  


Detailed Solution with Background Information

Return to Sample Exam