Difference between revisions of "009A Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Find the derivatives of the following functions. Do not simplify.
+
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
  
::<span class="exam">a)<math>f(x)=\frac{(3x-5)(-x^{-2}+4x)}{x^{\frac{4}{5}}}</math>
+
<span class="exam">(a)&nbsp; <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math>
::<span class="exam">b)<math>g(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{\pi}</math> for <math>x>0.</math>
 
  
 +
<span class="exam">(b)&nbsp; <math style="vertical-align: -18px">g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(c)&nbsp; <math style="vertical-align: -6px">h(x)=(x+\cos^2x)^8</math>
!Foundations: &nbsp;
 
|-
 
|
 
|-
 
|
 
::
 
|-
 
|
 
::
 
|}
 
  
 +
<hr>
  
'''Solution:'''
+
[[009A Sample Midterm 3, Problem 5 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
  
'''(a)'''
+
[[File:9ASM3P5.jpg|600px|thumb|center]]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|}
 
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:58, 6 November 2017

Find the derivatives of the following functions. Do not simplify.

(a) 

(b) 

(c) 


Detailed Solution with Background Information

Return to Sample Exam