Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">Find the following limits:
 
<span class="exam">Find the following limits:
  
::<span class="exam">a) Find <math>\lim _{x\rightarrow 2} g(x),</math> provided that <math>\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5</math>
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -13px">\lim _{x\rightarrow 2} g(x),</math>&nbsp; provided that &nbsp;<math style="vertical-align: -15px">\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5.</math>
::<span class="exam">b) Find <math>\lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} </math>
 
::<span class="exam">c) Evaluate <math>\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math>
 
  
 +
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} </math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math>
!Foundations: &nbsp;
+
<hr>
|-
+
[[009A Sample Midterm 1, Problem 1 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
| '''1.''' Linearity rules of limits
 
|-
 
| '''2.''' Limit sin(x)/x
 
|-
 
|'''3.''' Left and right hand limits
 
|}
 
  
'''Solution:'''
+
[[File:9ASM1P1.jpg|600px|thumb|center]]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since <math>\lim_{x\rightarrow 2} x =2\ne 0,</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{5} & = & \displaystyle{\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]}\\
 
&&\\
 
& = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{\lim_{x\rightarrow 2} x}}\\
 
&&\\
 
& = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If we multiply both sides of the last equation by <math>2,</math> we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>10=\lim_{x\rightarrow 2} (4-g(x)).</math>
 
|-
 
|Now, using linearity properties of limits, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{10} & = & \displaystyle{\lim_{x\rightarrow 2} 4 -\lim_{x\rightarrow 2}g(x)}\\
 
&&\\
 
& = & \displaystyle{4-\lim_{x\rightarrow 2} g(x).}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Solving for <math>\lim_{x\rightarrow 2} g(x)</math> in the last equation,
 
|-
 
|we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math> \lim_{x\rightarrow 2} g(x)=-6.</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(c)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math> \lim_{x\rightarrow 2} g(x)=-6</math>
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:36, 6 November 2017

Find the following limits:

(a) Find    provided that  

(b) Find  

(c) Evaluate  


Detailed Solution with Background Information

Return to Sample Exam