Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">If <math>\sum_{n=0}^\infty c_nx^n</math> converges, does it follow that the following series converges?
+
<span class="exam">If &nbsp;<math>\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges, does it follow that the following series converges?
  
::<span class="exam">a) <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
::<span class="exam">b) <math>\sum_{n=0}^\infty c_n(-x)^n </math>
 
  
 +
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^\infty c_n(-x)^n </math>
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Midterm 2, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|A geometric series <math>\sum_{n=0}^{\infty} ar^n</math> converges if <math>|r|<1.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Midterm 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|-
 
|We have <math>r=x.</math>
 
|-
 
|Since this series converges,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>|r|=|x|<1.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|The series <math>\sum_{n=0} c_n\bigg(\frac{x}{2}\bigg)^n</math> is also a geometric series.
 
|-
 
|For this series, <math>r=\frac{x}{2}.</math>
 
|-
 
|Now, we notice
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{|r|} & = & \displaystyle{\bigg|\frac{x}{2}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\frac{|x|}{2}}\\
 
&&\\
 
& < & \displaystyle{\frac{1}{2}}
 
\end{array}</math>
 
|-
 
|since <math>|x|<1.</math>
 
|-
 
| Since <math>|r|<1,</math> this series converges.
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we notice that <math>\sum_{n=0}^\infty c_nx^n</math> is a geometric series.
 
|-
 
|We have <math>r=x.</math>
 
|-
 
|Since this series converges,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>|r|=|x|<1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|The series <math>\sum_{n=0}^\infty c_n(-x)^n</math> is also a geometric series.
 
|-
 
|For this series, <math>r=-x.</math>
 
|-
 
|Now, we notice
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{|r|} & = & \displaystyle{|-x|}\\
 
&&\\
 
& = & \displaystyle{|x|}\\
 
&&\\
 
& < & \displaystyle{1}
 
\end{array}</math>
 
|-
 
|since <math>|x|<1.</math>
 
|-
 
|Since <math>|r|<1,</math> this series converges.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The series converges.
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The series converges.
 
|}
 
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 12:39, 12 November 2017

If    converges, does it follow that the following series converges?

(a)  

(b)  



Solution


Detailed Solution


Return to Sample Exam