Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
  
::<span class="exam">a) <math>\sum_{n=0}^\infty n^nx^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^\infty n^nx^n</math>
::<span class="exam">b) <math>\sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
 
  
 +
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
 +
<hr>
 +
[[009C Sample Midterm 2, Problem 4 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
| Root Test
 
|-
 
| Ratio Test
 
|-
 
|
 
|}
 
  
 +
[[009C Sample Midterm 2, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by applying the Root Test.
 
|-
 
|We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} \sqrt{|a_n|}} & = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{|n^nx^n|}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |n^nx^n|^{\frac{1}{n}}}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |nx|}\\
 
&&\\
 
& = & \displaystyle{n|x|}\\
 
&&\\
 
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} n}\\
 
&&\\
 
& = & \displaystyle{\infty}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|This means that as long as <math>x\ne 0,</math> this series diverges.
 
|-
 
|Hence, the radius of convergence is <math>R=0</math> and
 
|-
 
|the interval of convergence is <math>\{0\}.</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We first use the Ratio Test to determine the radius of convergence.
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} |x+1|\frac{\sqrt{n}}{\sqrt{n+1}}}\\
 
&&\\
 
& = & \displaystyle{|x+1|\lim_{n\rightarrow \infty} \sqrt{\frac{n}{n+1}}}\\
 
&&\\
 
& = & \displaystyle{|x+1|\sqrt{\lim_{n\rightarrow \infty} \frac{n}{n+1}}}\\
 
&&\\
 
& = & \displaystyle{|x+1|\sqrt{1}}\\
 
&&\\
 
&=& \displaystyle{|x+1|.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|The Ratio Test tells us this series is absolutely convergent if <math>|x+1|<1.</math>
 
|-
 
|Hence, the Radius of Convergence of this series is <math>R=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we need to determine the interval of convergence.
 
|-
 
|First, note that <math>|x+1|<1</math> corresponds to the interval <math>(-2,0).</math>
 
|-
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|-
 
|for convergence since the Ratio Test is inconclusive when <math>R=1.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|First, let <math>x=0.</math>
 
|-
 
|Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math>
 
|-
 
|We note that this is a <math>p</math>-series with <math>p=\frac{1}{2}.</math>
 
|-
 
|Since <math>p<1,</math> the series diverges.
 
|-
 
|Hence, we do not include <math>x=0</math> in the interval.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 5: &nbsp;
 
|-
 
|Now, let <math>x=-2.</math>
 
|-
 
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
 
|-
 
|This series is alternating.
 
|-
 
|Let <math>b_n=\frac{1}{\sqrt{n}}.</math>
 
|-
 
|The sequence <math>\{b_n\}</math> is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|for all <math>n\ge 1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} b_n=\lim_{n\rightarrow \infty} \frac{1}{\sqrt{n}}=0.</math>
 
|-
 
|Therefore, the series converges by the Alternating Series Test.
 
|-
 
|Hence, we include <math>x=-2</math> in our interval of convergence.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 6: &nbsp;
 
|-
 
|The interval of convergence is <math>[-2,0).</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is <math>R=0</math> and the interval of convergence is <math>\{0\}.</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is <math>R=1</math> and the interval fo convergence is <math>[-2,0).</math>
 
|}
 
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 12:38, 12 November 2017

Find the radius of convergence and interval of convergence of the series.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam