Difference between revisions of "009C Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Determine whether the following series converges absolutely, conditionally or whether it diverges.
+
<span class="exam"> Determine whether the following series converges absolutely,  
 +
 
 +
<span class="exam"> conditionally or whether it diverges.
  
 
<span class="exam"> Be sure to justify your answers!
 
<span class="exam"> Be sure to justify your answers!
  
::::::<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
+
::<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
 
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' A series <math>\sum a_n</math> is '''absolutely convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series <math>\sum |a_n|</math> converges.
 
|-
 
|'''2.''' A series <math>\sum a_n</math> is '''conditionally convergent''' if
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series <math>\sum |a_n|</math> diverges and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; the series <math>\sum a_n</math> converges.
 
|}
 
 
 
 
 
'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we take the absolute value of the terms in the original series.
 
|-
 
|Let <math>a_n=\frac{(-1)^n}{n}.</math>
 
|-
 
|Therefore,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^\infty |a_n|} & = & \displaystyle{\sum_{n=1}^\infty \bigg|\frac{(-1)^n}{n}\bigg|}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=1}^\infty \frac{1}{n}.}
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Step 2: &nbsp;
+
[[009C Sample Midterm 1, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|This series is the harmonic series (or <math>p</math>-series with <math>p=1</math>).
 
|-
 
|So, it diverges. Hence the series
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
 
|-
 
|is not absolutely convergent.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we need to look back at the original series to see
 
|-
 
|if it is conditionally converges.
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 4: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 22:54, 11 November 2017

Determine whether the following series converges absolutely,

conditionally or whether it diverges.

Be sure to justify your answers!



Solution


Detailed Solution


Return to Sample Exam