Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
+
<span class="exam">Consider the infinite series &nbsp;<math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
  
::<span class="exam">a) Find an expression for the <math>n</math>th partial sum <math>s_n</math> of the series.
+
<span class="exam">(a) Find an expression for the &nbsp;<math style="vertical-align: 0px">n</math>th partial sum &nbsp;<math style="vertical-align: -3px">s_n</math>&nbsp; of the series.
::<span class="exam">b) Compute <math>\lim_{n\rightarrow \infty} s_n.</math>
 
  
 +
<span class="exam">(b) Compute &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math>
 +
<hr>
 +
[[009C Sample Midterm 1, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|The <math>n</math>th partial sum, <math>s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math>
 
|-
 
|is defined as
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=\sum_{i=1}^n a_i.</math>
 
|}
 
  
'''Solution:'''
+
[[009C Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We need to find a pattern for the partial sums in order to find a formula.
 
|-
 
|We start by calculating <math>s_2</math>. We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Next, we calculate <math>s_3</math> and <math>s_4.</math> We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{s_3} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)}\\
 
&&\\
 
& = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^4}\bigg)}
 
\end{array}</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{s_4} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)+2\bigg(\frac{1}{2^4}-\frac{1}{2^5}\bigg)}\\
 
&&\\
 
& = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^5}\bigg).}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|If we look at <math>s_2,s_3,s_4, </math> we notice a pattern.
 
|-
 
|From this pattern, we get the formula
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|From Part (a), we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now calculate <math>\lim_{n\rightarrow \infty} s_n.</math>
 
|-
 
|We get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} 2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{2}{2^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|}
 
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 22:52, 11 November 2017

Consider the infinite series  

(a) Find an expression for the  th partial sum    of the series.

(b) Compute  


Solution


Detailed Solution


Return to Sample Exam