Difference between revisions of "009B Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Otis Taylor plots the price per share of a stock that he owns as a function of time
+
<span class="exam">Evaluate the indefinite and definite integrals.
  
<span class="exam">and finds that it can be approximated by the function
+
<span class="exam">(a) &nbsp; <math>\int x^2\sqrt{1+x^3}~dx</math>
  
::::::<math>s(t)=t(25-5t)+18</math>
+
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 1, Problem 2 Solution|'''<u>Solution</u>''']]
  
<span class="exam">where <math>t</math> is the time (in years) since the stock was purchased.
 
  
<span class="exam">Find the average price of the stock over the first five years.
+
[[009B Sample Midterm 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|The average value of a function <math style="vertical-align: -5px">f(x)</math> on an interval <math style="vertical-align: -5px">[a,b]</math> is given by <math style="vertical-align: -18px">f_{\text{avg}}=\frac{1}{b-a}\int_a^b f(x)~dx</math>.
 
|}
 
 
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the formula given in Foundations, we have:
 
|-
 
| &nbsp; &nbsp;<math style="vertical-align: 0px">f_{\text{avg}}=</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
| &nbsp; &nbsp; <math></math>
 
|-
 
|
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:01, 12 November 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam