Difference between revisions of "009A Sample Midterm 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam"> ::<span class="exam">a) ::<span class="exam">b) {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |- | |- | :: |...") |
Kayla Murray (talk | contribs) |
||
| (9 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> Find the derivatives of the following functions. Do not simplify. |
| − | + | <span class="exam">(a) <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math> | |
| − | |||
| + | <span class="exam">(b) <math style="vertical-align: -18px">g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math> | ||
| + | |||
| + | <span class="exam">(c) <math style="vertical-align: -6px">h(x)=(x+\cos^2x)^8</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''1.''' '''Chain Rule''' |
| + | |- | ||
| + | | <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math> | ||
|- | |- | ||
| − | | | + | |'''2.''' '''Quotient Rule''' |
| − | |||
|- | |- | ||
| − | | | + | | <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math> |
| − | |||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 23: | Line 26: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, using the Chain Rule, we have |
|- | |- | ||
| − | | | + | | <math>f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'.</math> |
|} | |} | ||
| Line 31: | Line 34: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, using the Quotient Rule and Chain Rule, we have |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{f'(x)} & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^2}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^2}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg).} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 40: | Line 52: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, using the Chain Rule, we have |
| + | |- | ||
| + | | <math>g'(x)=\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
| + | |- | ||
| + | |Now, using the Quotient Rule, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{g'(x)} & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(x^2+2)'-(x^2+2)(x^2+4)'}{(x^2+4)^2}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg).} | ||
| + | \end{array}</math> | ||
|- | |- | ||
| | | | ||
| Line 49: | Line 76: | ||
|} | |} | ||
| + | '''(c)''' | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step | + | !Step 1: |
|- | |- | ||
| − | | | + | |First, using the Chain Rule, we have |
|- | |- | ||
| − | | | + | | <math>h'(x)=8(x+\cos^2(x))^7(x+\cos^2(x))'.</math> |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, using the Chain Rule again we get |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{h'(x)} & = & \displaystyle{8(x+\cos^2(x))^7(x+\cos^2(x))'}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{8(x+\cos^2(x))^7(1+2\cos(x)(\cos(x))')}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{8(x+\cos^2(x))^7(1-2\cos(x)\sin(x)).} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math> |
| + | |- | ||
| + | | '''(b)''' <math>\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math> | ||
|- | |- | ||
| − | |'''( | + | | '''(c)''' <math>8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math> |
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 14:57, 18 February 2017
Find the derivatives of the following functions. Do not simplify.
(a)
(b)
(c)
| Foundations: |
|---|
| 1. Chain Rule |
| 2. Quotient Rule |
Solution:
(a)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Step 2: |
|---|
| Now, using the Quotient Rule and Chain Rule, we have |
|
|
(b)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Step 2: |
|---|
| Now, using the Quotient Rule, we have |
|
|
(c)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Step 2: |
|---|
| Now, using the Chain Rule again we get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |