Difference between revisions of "009A Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar. Click on the''' '''<span clas...")
 
 
(22 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
+
'''This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.'''
 +
 
 +
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[009B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[009A_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
<span class="exam"> Evaluate the following limits.
 
<span class="exam"> Evaluate the following limits.
  
::<span class="exam">a) Find <math>\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
::<span class="exam">b) Find <math>\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
+
 
::<span class="exam">c) Evaluate <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
+
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
 +
 
 +
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
 +
 
 +
== [[009A_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam">The function &nbsp;<math style="vertical-align: -5px">f(x)=3x^7-8x+2</math>&nbsp; is a polynomial and therefore continuous everywhere.
 +
 
 +
<span class="exam">(a) State the Intermediate Value Theorem.
  
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
<span class="exam">(b) Use the Intermediate Value Theorem to show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has a zero in the interval &nbsp;<math style="vertical-align: -5px">[0,1].</math>
<span class="exam">Consider the following function <math> f:</math>
 
::::::<math>f(x) = \left\{
 
    \begin{array}{lr}
 
      x^2 &  \text{if }x < 1\\
 
      \sqrt{x} & \text{if }x \geq 1
 
    \end{array}
 
  \right.
 
</math>
 
  
::<span class="exam">a) Find <math> \lim_{x\rightarrow 1^-} f(x).</math>
+
== [[009A_Sample Midterm 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
::<span class="exam">b) Find <math> \lim_{x\rightarrow 1^+} f(x).</math>
+
<span class="exam"> Use the definition of the derivative to find &nbsp; <math>\frac{dy}{dx}</math> &nbsp; for the function &nbsp;<math style="vertical-align: -12px">y=\frac{1+x}{3x}.</math>
::<span class="exam">c) Find <math> \lim_{x\rightarrow 1} f(x).</math>
 
::<span class="exam">d) Is <math>f</math> continuous at <math>x=1?</math> Briefly explain.
 
  
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[009A_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
<span class="exam"> Let <math>y=\sqrt{3x-5}.</math>
+
<span class="exam"> To determine drug dosages, doctors estimate a person's body surface area (BSA) (in meters squared) using the formula:
  
::<span class="exam">a) Use the definition of the derivative to compute <math>\frac{dy}{dx}</math> for <math>y=\sqrt{3x-5}.</math>
+
::<span class="exam"><math>\text{BSA}=\frac{\sqrt{hm}}{60}</math>
::<span class="exam">b) Find the equation of the tangent line to <math>y=\sqrt{3x-5}</math> at <math>(2,1).</math>
 
  
== [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
<span class="exam">where &nbsp;<math style="vertical-align: 0px">h</math>&nbsp; is the height in centimeters and &nbsp;<math style="vertical-align: 0px">m</math>&nbsp; is the mass in kilograms. Calculate the rate of change of BSA with respect to height for a person of a constant mass of &nbsp;<math style="vertical-align: 0px">m=85.</math>&nbsp; What is the rate at &nbsp;<math style="vertical-align: -1px">h=170</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">h=190?</math>&nbsp; Express your results in the correct units. Does the BSA increase more rapidly with respect to height at lower or higher heights?
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
 
  
::<span class="exam">a) <math>f(x)=\sqrt{x}(x^2+2)</math>
+
== [[009A_Sample Midterm 2,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
::<span class="exam">b) <math>g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}</math> where <math>x>0</math>
+
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
::<span class="exam">c) <math>h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math>
 
  
== [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -5px">f(x)=\tan^3(7x^2+5) </math>
<span class="exam"> The displacement from equilibrium of an object in harmonic motion on the end of a spring is:
 
  
::::::<span class="exam"><math>y=\frac{1}{3}\cos(12t)-\frac{1}{4}\sin(12t)</math>
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -5px">g(x)=\sin(\cos(e^x)) </math>
  
<span class="exam">where <math>y</math> is measured in feet and <math>t</math> is the time in seconds. Determine the position and velocity of the object when <math>t=\frac{\pi}{8}.</math>
+
<span class="exam">(c) &nbsp; <math style="vertical-align: -18px">h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} </math>

Latest revision as of 10:11, 3 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  

 Problem 2 

The function    is a polynomial and therefore continuous everywhere.

(a) State the Intermediate Value Theorem.

(b) Use the Intermediate Value Theorem to show that    has a zero in the interval  

 Problem 3 

Use the definition of the derivative to find     for the function  

 Problem 4 

To determine drug dosages, doctors estimate a person's body surface area (BSA) (in meters squared) using the formula:

where    is the height in centimeters and    is the mass in kilograms. Calculate the rate of change of BSA with respect to height for a person of a constant mass of    What is the rate at    and    Express your results in the correct units. Does the BSA increase more rapidly with respect to height at lower or higher heights?

 Problem 5 

Find the derivatives of the following functions. Do not simplify.

(a)  

(b)  

(c)