Difference between revisions of "U-substitution"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Introduction== | ==Introduction== | ||
− | The method of <math>u</math>-substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative | + | The method of <math style="vertical-align: -1px">u</math>-substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative. |
− | + | This method is closely related to the chain rule for derivatives. | |
− | <u>NOTE</u>: After you plug-in your substitution, all of the <math>x</math>'s in your integral should be gone. The only variables remaining in your integral should be <math>u</math>'s. | + | One question that is frequently asked is "How do you know what substitution to make?" In general, this is a difficult question to answer since it is dependent on the integral. The best way to master <math style="vertical-align: -1px">u</math>-substitution is to work out as many problems as possible. This will help you: |
+ | |||
+ | (1) understand the <math style="vertical-align: -1px">u</math>-substitution method and | ||
+ | |||
+ | (2) correctly identify the necessary substitution. | ||
+ | |||
+ | <u>NOTE</u>: After you plug-in your substitution, all of the <math style="vertical-align: 0px">x</math>'s in your integral should be gone. The only variables remaining in your integral should be <math style="vertical-align: 0px">u</math>'s. | ||
==Warm-Up== | ==Warm-Up== | ||
Line 14: | Line 20: | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | |Let <math>u=4x^2+5x+3</math> | + | |Let <math style="vertical-align: -3px">u=4x^2+5x+3.</math> Then, <math style="vertical-align: -5px">du=(8x+5)~dx.</math> |
|- | |- | ||
|- | |- | ||
− | |Plugging these into our integral, we get <math>\int e^u~du</math> | + | |Plugging these into our integral, we get <math style="vertical-align: -14px">\int e^u~du,</math> which we know how to integrate. |
|- | |- | ||
|So, we get | |So, we get | ||
Line 27: | Line 33: | ||
& = & \displaystyle{e^u+C}\\ | & = & \displaystyle{e^u+C}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{e^{4x^2+5x+3}+C} | + | & = & \displaystyle{e^{4x^2+5x+3}+C.} \\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 34: | Line 40: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>e^{4x^2+5x+3}+C</math> | + | | <math>e^{4x^2+5x+3}+C</math> |
|- | |- | ||
|} | |} | ||
Line 42: | Line 48: | ||
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -2px">u=1-2x^2.</math> Then, <math style="vertical-align: -2px">du=-4x~dx.</math> Hence, <math style="vertical-align: -15px">\frac{du}{-4}=x~dx.</math> | ||
+ | |- | ||
+ | |Plugging these into our integral, we get | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int\frac{x}{\sqrt{1-2x^2}}~dx} & = & \displaystyle{\int -\frac{1}{4}~u^{-\frac{1}{2}}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\frac{1}{2}u^{\frac{1}{2}}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\frac{1}{2}\sqrt{1-2x^2}+C.} \\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
|} | |} | ||
Line 50: | Line 67: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{ | + | | <math>-\frac{1}{2}\sqrt{1-2x^2}+C</math> |
|- | |- | ||
|} | |} | ||
Line 58: | Line 75: | ||
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -6px">u=\ln(x).</math> Then, <math style="vertical-align: -14px">du=\frac{1}{x}~dx.</math> | ||
+ | |- | ||
+ | |Plugging these into our integral, we get | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int\frac{\sin(\ln x)}{x}~dx} & = & \displaystyle{\int \sin(u)~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\cos(u)+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\cos(\ln x)+C.} \\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
|} | |} | ||
Line 66: | Line 94: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>-\cos(\ln x)+C</math> | + | | <math>-\cos(\ln x)+C</math> |
|- | |- | ||
|} | |} | ||
Line 74: | Line 102: | ||
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -1px">u=x^2.</math> Then, <math style="vertical-align: -1px">du=2x~dx</math> and <math style="vertical-align: -15px">\frac{du}{2}=x~dx.</math> | ||
+ | |- | ||
+ | |Plugging these into our integral, we get | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int xe^{x^2}~dx} & = & \displaystyle{\int \frac{1}{2}e^u~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}e^u+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}e^{x^2}+C.} \\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
|} | |} | ||
Line 82: | Line 121: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>\frac{1}{2}e^{x^2}+C</math> | + | | <math>\frac{1}{2}e^{x^2}+C</math> |
|- | |- | ||
|} | |} | ||
Line 88: | Line 127: | ||
== Exercise 1 == | == Exercise 1 == | ||
+ | Evaluate the indefinite integral <math style="vertical-align: -16px">\int \frac{2}{y^2+4}~dy.</math> | ||
+ | |||
+ | First, we factor out <math style="vertical-align: -1px">4</math> out of the denominator. | ||
+ | |||
+ | So, we have | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{4}\int \frac{2}{\frac{y^2}{4}+1}~dy}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\int \frac{1}{(\frac{y}{2})^2+1}~dy.}\\ | ||
+ | \end{array}</math> | ||
+ | |||
+ | Now, we use <math style="vertical-align: -1px">u</math>-substitution. Let <math>u=\frac{y}{2}.</math> | ||
+ | |||
+ | Then, <math style="vertical-align: -14px">du=\frac{1}{2}~dy</math> and <math style="vertical-align: -5px">2~du=dy.</math> | ||
+ | |||
+ | Plugging these into our integral, we get | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{2}{y^2+4}~dy} & = & \displaystyle{\frac{1}{2}\int \frac{2}{u^2+1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{1}{u^2+1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\arctan(u)+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\arctan\bigg(\frac{y}{2}\bigg)+C.}\\ | ||
+ | \end{array}</math> | ||
+ | So, we have | ||
+ | ::<math>\int \frac{2}{y^2+4}~dy=\arctan\bigg(\frac{y}{2}\bigg)+C.</math> | ||
== Exercise 2 == | == Exercise 2 == | ||
+ | Evaluate the indefinite integral <math style="vertical-align: -17px">\int \frac{\cos(x)}{(5+\sin x)^2}~dx.</math> | ||
+ | Let <math style="vertical-align: -5px">u=5+\sin(x).</math> Then, <math style="vertical-align: -5px">u=\cos(x)~dx.</math> | ||
+ | Plugging these into our integral, we get | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{\cos(x)}{(5+\sin x)^2}~dx} & = & \displaystyle{\int \frac{1}{u^2}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\frac{1}{u}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\frac{1}{5+\sin(x)}+C.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we have | ||
+ | ::<math>\int \frac{\cos(x)}{(5+\sin x)^2}~dx=-\frac{1}{5+\sin(x)}+C.</math> | ||
== Exercise 3 == | == Exercise 3 == | ||
+ | Evaluate the indefinite integral <math style="vertical-align: -16px">\int \frac{x+5}{2x+3}~dx.</math> | ||
+ | |||
+ | Here, the substitution is not obvious. | ||
+ | |||
+ | Let <math style="vertical-align: -3px">u=2x+3.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -14px">\frac{du}{2}=dx.</math> | ||
+ | |||
+ | Now, we need a way of getting rid of <math style="vertical-align: -2px">x+5</math> in the numerator. | ||
+ | Solving for <math style="vertical-align: 0px">x</math> in the first equation, we get <math style="vertical-align: -14px">x=\frac{1}{2}u-\frac{3}{2}.</math> | ||
+ | |||
+ | Plugging these into our integral, we get | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{x+5}{2x+3}~dx} & = & \displaystyle{\int \frac{(\frac{1}{2}u-\frac{3}{2})+5}{2u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{2}\int \frac{\frac{1}{2}u+\frac{7}{2}}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}\int \frac{u+7}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}\int 1+\frac{7}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}(u+7\ln|u|)+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{4}(2x+3+7\ln|2x+3|)+C.}\\ | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we get | ||
+ | ::<math>\int \frac{x+5}{2x+3}~dx=\frac{1}{4}(2x+3+7\ln|2x+3|)+C.</math> | ||
== Exercise 4 == | == Exercise 4 == | ||
+ | |||
+ | Evaluate the indefinite integral <math style="vertical-align: -14px">\int \frac{x^2+4}{x+2}~dx.</math> | ||
+ | |||
+ | Let <math style="vertical-align: -2px">u=x+2.</math> Then, <math style="vertical-align: -1px">du=dx.</math> | ||
+ | |||
+ | Now, we need a way of replacing <math style="vertical-align: -2px">x^2+4.</math> | ||
+ | |||
+ | If we solve for <math style="vertical-align: 0px">x</math> in our first equation, we get <math style="vertical-align: -1px">x=u-2.</math> | ||
+ | |||
+ | Now, we square both sides of this last equation to get <math style="vertical-align: -5px">x^2=(u-2)^2.</math> | ||
+ | |||
+ | Plugging in to our integral, we get | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{x^2+4}{x+2}~dx} & = & \displaystyle{\int \frac{(u-2)^2+4}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{u^2-4u+4+4}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{u^2-4u+8}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int u-4+\frac{8}{u}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{u^2}{2}-4u+8\ln|u|+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.}\\ | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we have | ||
+ | ::<math>\int \frac{x^2+4}{x+2}~dx=\frac{(x+2)^2}{2}-4(x+2)+8\ln|x+2|+C.</math> |
Latest revision as of 14:57, 24 August 2017
Introduction
The method of -substitution is used to simplify the function you are integrating so that you can easily recognize it's antiderivative.
This method is closely related to the chain rule for derivatives.
One question that is frequently asked is "How do you know what substitution to make?" In general, this is a difficult question to answer since it is dependent on the integral. The best way to master -substitution is to work out as many problems as possible. This will help you:
(1) understand the -substitution method and
(2) correctly identify the necessary substitution.
NOTE: After you plug-in your substitution, all of the 's in your integral should be gone. The only variables remaining in your integral should be 's.
Warm-Up
Evaluate the following indefinite integrals.
1)
Solution: |
---|
Let Then, |
Plugging these into our integral, we get which we know how to integrate. |
So, we get |
|
Final Answer: |
---|
2)
Solution: |
---|
Let Then, Hence, |
Plugging these into our integral, we get |
|
Final Answer: |
---|
3)
Solution: |
---|
Let Then, |
Plugging these into our integral, we get |
|
Final Answer: |
---|
4)
Solution: |
---|
Let Then, and |
Plugging these into our integral, we get |
|
Final Answer: |
---|
Exercise 1
Evaluate the indefinite integral
First, we factor out out of the denominator.
So, we have
Now, we use -substitution. Let
Then, and
Plugging these into our integral, we get
So, we have
Exercise 2
Evaluate the indefinite integral
Let Then,
Plugging these into our integral, we get
So, we have
Exercise 3
Evaluate the indefinite integral
Here, the substitution is not obvious.
Let Then, and
Now, we need a way of getting rid of in the numerator.
Solving for in the first equation, we get
Plugging these into our integral, we get
So, we get
Exercise 4
Evaluate the indefinite integral
Let Then,
Now, we need a way of replacing
If we solve for in our first equation, we get
Now, we square both sides of this last equation to get
Plugging in to our integral, we get
So, we have