Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam">Evaluate the indefinite and definite integrals. <span class="exam">(a)   <math>\int x\ln x ~dx</math> <span class="exam">(b)   <math>\int_0...")
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">Evaluate the indefinite and definite integrals.
 
<span class="exam">Evaluate the indefinite and definite integrals.
  
::<span class="exam">a) <math>\int \tan^3x ~dx</math>
+
<span class="exam">(a) &nbsp; <math>\int x\ln x ~dx</math>  
::<span class="exam">b) <math>\int_0^\pi \sin^2x~dx</math>
 
  
 +
<span class="exam">(b) &nbsp; <math>\int_0^\pi \sin^2x~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 5 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|Recall the trig identities:
 
|-
 
|'''1.''' <math>\tan^2x+1=\sec^2x</math>
 
|-
 
|'''2.''' <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|How would you integrate <math>\tan x~dx?</math>
 
|-
 
|
 
::You could use <math>u</math>-substitution. First, write <math>\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|
 
::Now, let <math>u=\cos(x)</math>. Then, <math>du=-\sin(x)dx.</math> Thus,
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\
 
&&\\
 
& = & \displaystyle{-\ln(u)+C}\\
 
&&\\
 
& = & \displaystyle{-\ln|\cos x|+C.}\\
 
\end{array}</math>
 
|}
 
  
'''Solution:'''
+
[[009B Sample Midterm 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by writing <math>\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>
 
|-
 
|Since <math>\tan^2x=\sec^2x-1,</math> we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\
 
&&\\
 
& = & \displaystyle{\int \sec^2x\tan x~dx-\int \tan x~dx.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we need to use <math>u</math>-substitution for the first integral. Let <math>u=\tan(x).</math> Then, <math>du=\sec^2x~dx.</math> So, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{u^2}{2}-\int \tan x~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{\tan^2x}{2}-\int \tan x~dx.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|For the remaining integral, we also need to use <math>u</math>-substitution. First, we write <math>\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|Now, we let <math>u=\cos x.</math> Then, <math>du=-\sin x~dx.</math> So, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{\tan^2x}{2}+\ln |u|+C}\\
 
&&\\
 
& = & \displaystyle{\frac{\tan^2x}{2}+\ln |\cos x|+C.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|One of the double angle formulas is <math>\cos(2x)=1-2\sin^2(x).</math> Solving for <math>\sin^2(x),</math> we get <math>\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
 
|-
 
|Plugging this identity into our integral, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^\pi \frac{1}{2}~dx-\int_0^\pi \frac{\cos(2x)}{2}~dx.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If we integrate the first integral, we get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{2}-\int_0^\pi \frac{\cos(2x)}{2}~dx.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|For the remaining integral, we need to use <math>u</math>-substitution. Let <math>u=2x.</math> Then, <math>du=2~dx</math> and <math>\frac{du}{2}=dx.</math> Also, since this is a definite integral
 
|-
 
|and we are using <math>u</math>-substitution, we need to change the bounds of integration. We have <math>u_1=2(0)=0</math> and <math>u_2=2(\pi)=2\pi.</math>
 
|-
 
|So, the integral becomes
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{2}-\left.\frac{\sin(u)}{4}\right|_0^{2\pi}}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{2}-\bigg(\frac{\sin(2\pi)}{4}-\frac{\sin(0)}{4}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{2}.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|-
 
|'''(b)''' <math>\frac{\pi}{2}</math>
 
|}
 
  
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:33, 23 November 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam