Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
 
<span class="exam">In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
  
<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}</math>
  
<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}</math>
  
<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
+
<span class="exam">(c) &nbsp; <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}</math>
== Temp1 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|Recall:
 
|-
 
|'''L'Hôpital's Rule'''
 
|-
 
|Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|
 
::If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|
 
::then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
'''Solution:'''
+
<hr>
 +
[[009A Sample Final 1, Problem 1 Solution|'''<u>Solution</u>''']]
  
== Temp2 ==
 
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Final 1, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|We begin by factoring the numerator. We have
 
|-
 
|
 
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math>
 
|-
 
|So, we can cancel <math style="vertical-align: -2px">x+3</math> in the numerator and denominator. Thus, we have
 
|-
 
|
 
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we can just plug in <math style="vertical-align: 0px">x=-3</math> to get
 
|-
 
|
 
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}=\frac{(-3)(-3-3)}{2}=\frac{18}{2}=9.</math>
 
|}
 
== Temp3 ==
 
'''(b)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using L'Hopital's Rule. So, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|This limit is <math>+\infty.</math>
 
|}
 
== Temp4 ==
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
| We have
 
|-
 
|
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math>
 
|-
 
|Since we are looking at the limit as <math>x</math> goes to negative infinity, we have <math style="vertical-align: -3px">\sqrt{x^2}=-x.</math>
 
|-
 
|So, we have
 
|-
 
|
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
| We simplify to get
 
|-
 
|
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
 
|-
 
|So, we have
 
|-
 
|
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
|}
 
== Temp5 ==
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math>9</math>.
 
|-
 
|'''(b)''' <math>+\infty</math>
 
|-
 
|'''(c)''' <math>\frac{-3}{2}</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:38, 2 December 2017

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam