Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> Find the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> at <math>a=\frac{\pi}{4}</math>.
+
<span class="exam"> Find the Taylor polynomial of degree 4 of &nbsp;<math style="vertical-align: -5px">f(x)=\cos^2x</math>&nbsp; at &nbsp;<math>a=\frac{\pi}{4}</math>.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 6 Solution|'''<u>Solution</u>''']]
|-
 
|The Taylor polynomial of <math style="vertical-align: -5px">f(x)</math> at <math style="vertical-align: -1px">a</math> is
 
|-
 
|
 
::<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
 
|}
 
  
'''Solution:'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Final 1, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|First, we make a table to find the coefficients of the Taylor polynomial.
 
|-
 
|
 
<table border="1" cellspacing="0" cellpadding="6" align = "center">
 
  <tr>
 
    <td align = "center"><math> n</math></td>
 
    <td align = "center"><math> f^{(n)}(x) </math></td>
 
    <td align = "center"><math> f^{(n)}(a) </math></td>
 
    <td align = "center"><math> \frac{f^{(n)}(a)}{n!} </math></td>
 
  </tr>
 
  <tr>
 
    <td align = "center"><math>0</math></td>
 
    <td align = "center"><math> \cos^2x  </math></td>
 
    <td align = "center"><math>  \frac{1}{2}</math></td>
 
    <td align = "center"><math> \frac{1}{2}</math></td>
 
  </tr>
 
<tr>
 
    <td align = "center"><math>1</math></td>
 
    <td align = "center"><math>  -2\cos x\sin x</math></td>
 
    <td align = "center"><math>  -1 </math></td>
 
    <td align = "center"><math> -1 </math></td>
 
  </tr>
 
<tr>
 
    <td align = "center"><math>2</math></td>
 
    <td align = "center"><math> 2\sin^2x-2\cos^2x </math></td>
 
    <td align = "center"><math>  0 </math></td>
 
    <td align = "center"><math> 0 </math></td>
 
  </tr>
 
<tr>
 
    <td align = "center"><math>3</math></td>
 
    <td align = "center"><math> 8\sin x\cos x </math></td>
 
    <td align = "center"><math>  4 </math></td>
 
    <td align = "center"><math> \frac{2}{3}</math></td>
 
  </tr>
 
<tr>
 
    <td align = "center"><math>4</math></td>
 
    <td align = "center"><math> 8\cos^2x-8\sin^2x  </math></td>
 
    <td align = "center"><math> 0 </math></td>
 
    <td align = "center"><math> 0 </math></td>
 
  </tr>
 
</table>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!},</math> the Taylor polynomial of degree 4 of <math style="vertical-align: -5px">f(x)=\cos^2x</math> is
 
|
 
|-
 
|
 
::<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|<math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:08, 2 December 2017

Find the Taylor polynomial of degree 4 of    at  .


Solution


Detailed Solution


Return to Sample Exam