Difference between revisions of "009B Sample Final 1, Problem 1"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
  
		
	
| Kayla Murray (talk | contribs)  | |||
| (15 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">Suppose the speed of a bee is given in the table. | 
| − | |||
| − | < | + | <table border="1" cellspacing="0" cellpadding="6" align = "center"> | 
| + |   <tr> | ||
| + |     <td align = "center">Time (s)</td> | ||
| + |     <td align = "center">Speed (cm/s)</td> | ||
| + |   </tr> | ||
| + |   <tr> | ||
| + |     <td align = "center"><math>0.0</math></td> | ||
| + |     <td align = "center"><math> 125.0  </math></td> | ||
| + |   </tr> | ||
| + |  <tr> | ||
| + |     <td align = "center"><math>2.0</math></td> | ||
| + |     <td align = "center"><math>  118.0</math></td> | ||
| + |   </tr> | ||
| + |  <tr> | ||
| + |     <td align = "center"><math>4.0</math></td> | ||
| + |     <td align = "center"><math> 116.0 </math></td> | ||
| + |   </tr> | ||
| + |  <tr> | ||
| + |     <td align = "center"><math>6.0</math></td> | ||
| + |     <td align = "center"><math> 112.0 </math></td> | ||
| + |   </tr> | ||
| + |  <tr> | ||
| + |     <td align = "center"><math>8.0</math></td> | ||
| + |     <td align = "center"><math> 120.0  </math></td> | ||
| + |   </tr> | ||
| + |  <tr> | ||
| + |     <td align = "center"><math>10.0</math></td> | ||
| + |     <td align = "center"><math> 113.0  </math></td> | ||
| + |   </tr> | ||
| − | < | + | </table> | 
| − | <span class="exam"> | + | <span class="exam">(a) Using the given measurements, find the left-hand estimate for the distance the bee moved during this experiment. | 
| + | |||
| + | <span class="exam">(b) Using the given measurements, find the midpoint estimate for the distance the bee moved during this experiment. | ||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| !Foundations:     | !Foundations:     | ||
| |- | |- | ||
| − | |'''1.''' The height of each rectangle in the  | + | |'''1.''' The height of each rectangle in the left-hand Riemann sum is given by choosing   | 
| + | |- | ||
| + | |        the left endpoints of each interval. | ||
| |- | |- | ||
| − | |''' | + | |'''3.''' The height of each rectangle in the midpoint Riemann sum is given by   | 
| |- | |- | ||
| − | | | + | |        <math style="vertical-align: -14px">\frac{f(a)+f(b)}{2}</math>  where  <math>a</math>  is the left endpoint of the interval and  <math style="vertical-align: -1px">b</math>  is the right endpoint of the interval. | 
| |} | |} | ||
| + | |||
| '''Solution:''' | '''Solution:''' | ||
| Line 25: | Line 57: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | | | + | |To estimate the distance the bee moved during this experiment, | 
| |- | |- | ||
| − | | | + | |we need to calculate the left-hand Riemann sum over the interval  <math style="vertical-align: -5px">[0,10].</math> | 
| |- | |- | ||
| − | | | + | |Based on the information given in the table, we will have  <math style="vertical-align: 0px">5</math>  rectangles and  | 
| |- | |- | ||
| − | | | + | |each rectangle will have width  <math style="vertical-align: 0px">2.</math> | 
| |} | |} | ||
| Line 37: | Line 69: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | | | + | |Let  <math style="vertical-align: -5px">s(t)</math>  be the speed of the bee during the experiment.  | 
| |- | |- | ||
| − | | | + | |Then, the left-hand Riemann sum is   | 
| − | |||
| − | |||
| |- | |- | ||
| | | | | ||
| − | + |         <math>\begin{array}{rcl} | |
| + | \displaystyle{2(s(0)+s(2)+s(4)+s(6)+s(8))} & = & \displaystyle{2(125+118+116+112+120)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{1182\text{ cm}.} | ||
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 52: | Line 86: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | | | + | |To estimate the distance the bee moved during this experiment, | 
| |- | |- | ||
| − | | | + | |we need to calculate the Riemann sum using the midpoint rule over the interval  <math style="vertical-align: -5px">[0,10].</math> | 
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| − | | | + | |Based on the information given in the table, we will have  <math style="vertical-align: 0px">5</math>  rectangles and  | 
| |- | |- | ||
| − | | | + | |each rectangle will have width  <math style="vertical-align: 0px">2.</math> | 
| − | |||
| |} | |} | ||
| − | |||
| − | |||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step  | + | !Step 2:   | 
| |- | |- | ||
| − | | | + | |Let  <math style="vertical-align: -5px">s(t)</math>  be the speed of the bee during the experiment.  | 
| |- | |- | ||
| − | | | + | |Then, the Riemann sum using the midpoint rule is  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| |- | |- | ||
| | | | | ||
| − | + |         <math>\begin{array}{rcl} | |
| − | \displaystyle{\ | + | \displaystyle{2\bigg(\frac{s(0)+s(2)}{2}+\frac{s(2)+s(4)}{2}+\frac{s(4)+s(6)}{2}+\frac{s(6)+s(8)}{2}+\frac{s(8)+s(10)}{2}\bigg)} & = & \displaystyle{1170\text{ cm}.} | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | & = & \displaystyle{ | ||
| \end{array}</math> | \end{array}</math> | ||
| |} | |} | ||
| + | |||
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |'''(a)''' <math | + | |    '''(a)'''    <math style="vertical-align: 0px">1182\text{ cm}</math> | 
| − | |||
| − | |||
| |- | |- | ||
| − | |'''( | + | |    '''(b)'''    <math style="vertical-align: 0px">1170\text{ cm}</math> | 
| |} | |} | ||
| [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Latest revision as of 09:45, 28 February 2017
Suppose the speed of a bee is given in the table.
| Time (s) | Speed (cm/s) | 
(a) Using the given measurements, find the left-hand estimate for the distance the bee moved during this experiment.
(b) Using the given measurements, find the midpoint estimate for the distance the bee moved during this experiment.
| Foundations: | 
|---|
| 1. The height of each rectangle in the left-hand Riemann sum is given by choosing | 
| the left endpoints of each interval. | 
| 3. The height of each rectangle in the midpoint Riemann sum is given by | 
| where is the left endpoint of the interval and is the right endpoint of the interval. | 
Solution:
(a)
| Step 1: | 
|---|
| To estimate the distance the bee moved during this experiment, | 
| we need to calculate the left-hand Riemann sum over the interval | 
| Based on the information given in the table, we will have rectangles and | 
| each rectangle will have width | 
| Step 2: | 
|---|
| Let be the speed of the bee during the experiment. | 
| Then, the left-hand Riemann sum is | 
| 
 | 
(b)
| Step 1: | 
|---|
| To estimate the distance the bee moved during this experiment, | 
| we need to calculate the Riemann sum using the midpoint rule over the interval | 
| Based on the information given in the table, we will have rectangles and | 
| each rectangle will have width | 
| Step 2: | 
|---|
| Let be the speed of the bee during the experiment. | 
| Then, the Riemann sum using the midpoint rule is | 
| 
 | 
| Final Answer: | 
|---|
| (a) | 
| (b) |