Difference between revisions of "009A Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
<span class="exam">Find the derivatives of the following functions.
 
<span class="exam">Find the derivatives of the following functions.
  
<span class="exam">a) <math style="vertical-align: -14px">f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">f(x)=\ln \bigg(\frac{x^2-1}{x^2+1}\bigg)</math>
  
<span class="exam">b) <math style="vertical-align: -3px">g(x)=2\sin (4x)+4\tan (\sqrt{1+x^3})</math>
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -3px">g(x)=3\sin (4x)+4\tan (\sqrt{1+x^3})</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' Chain Rule
 
|-
 
|'''2.''' Quotient rule
 
|-
 
|'''3.''' derivatives of trig functions
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009A Sample Final 1, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Using the Chain Rule, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{\bigg(\frac{x^2-1}{x^2+1}\bigg)}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we need to calculate <math>\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)</math>.
 
|-
 
|To do this, we use the Quotient Rule. So, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{d}{dx}\bigg(\frac{x^2-1}{x^2+1}\bigg)\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{(x^2+1)(2x)-(x^2-1)(2x)}{(x^2+1)^2}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{x^2+1}{x^2-1}\bigg(\frac{4x}{(x^2+1)^2}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{4x}{(x^2-1)(x^2+1)}}\\
 
&&\\
 
& = & \displaystyle{\frac{4x}{x^4-1}}\\
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Again, we need to use the Chain Rule. We have
 
|-
 
|
 
::<math>g'(x)=8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We need to calculate <math>\frac{d}{dx}\sqrt{1+x^3}</math>.
 
|-
 
|We use the Chain Rule again to get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\bigg(\frac{d}{dx}\sqrt{1+x^3}\bigg)}\\
 
&&\\
 
& = & \displaystyle{8\cos(4x)+4\sec^2(\sqrt{1+x^3})\frac{1}{2}(1+x^3)^{-\frac{1}{2}}3x^2}\\
 
&&\\
 
& = & \displaystyle{8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math style="vertical-align: -14px">f'(x)=\frac{4x}{x^4-1}</math>
 
|-
 
|'''(b)''' <math style="vertical-align: -18px">g'(x)=8\cos(4x)+\frac{6\sec^2(\sqrt{1+x^3})x^2}{\sqrt{1+x^3}}</math>.
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 07:51, 3 December 2017

Find the derivatives of the following functions.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam