Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
::::::<math>r=1+\sin 2\theta</math>
+
::<math>r=1+\sin 2\theta</math>
::::::<math>0\leq \theta \leq 2\pi</math>
+
::<math>0\leq \theta \leq 2\pi</math>
  
<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve.
  
<span class="exam">b) Find the area enclosed by the curve.
+
<span class="exam">(b) Find the area enclosed by the curve.
  
 +
<hr>
 +
[[009C Sample Final 1, Problem 8 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|Area under a polar curve
 
|}
 
  
'''Solution:'''
+
[[009C Sample Final 1, Problem 8 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Insert sketch
 
|}
 
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since the graph has symmetry (as seen in the graph), the area of the curve is
 
|-
 
|
 
::<math>2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta)</math>, we have
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\
 
&&\\
 
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\
 
&&\\
 
& = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Lastly, we evaluate to get
 
|-
 
|
 
::<math>\begin{array}{rcl}
 
\displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = &\displaystyle{\frac{3}{2}\frac{3\pi}{4}-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\
 
&&\\
 
& = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\
 
&&\\
 
& = & \displaystyle{\frac{3\pi}{2}}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' See Step 1 above.
 
|-
 
|'''(b)''' <math>\frac{3\pi}{2}</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:12, 2 December 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Find the area enclosed by the curve.


Solution


Detailed Solution


Return to Sample Exam