Difference between revisions of "009A Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing  
+
<span class="exam"> A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?
  
<span class="exam"> when 50 (meters) of the string has been let out?
+
<hr>
 +
[[009A Sample Final 1, Problem 5 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|
 
|}
 
  
'''Solution:'''
+
[[009A Sample Final 1, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Insert diagram.
 
|-
 
|From the diagram, we have <math>30^2+h^2=s^2</math> by the Pythagorean Theorem.
 
|-
 
|Taking derivatives, we get
 
|-
 
|<math>2hh'=2ss'</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|If <math>s=50</math>, then <math>h=\sqrt{50^2-30^2}=40</math>.
 
|-
 
|So, we have <math>2(40)6=2(50)s'</math>.
 
|-
 
|Solving for <math>s'</math>, we get <math>s'=\frac{24}{5} </math>m/s.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
| <math>s'=\frac{24}{5} </math>m/s
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 08:05, 3 December 2017

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing when 50 (meters) of the string has been let out?


Solution


Detailed Solution


Return to Sample Exam