Difference between revisions of "009A Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
(21 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam">Given the function <math>f(x)=x^3-6x^2+5</math>,  
+
<span class="exam">Given the function &nbsp;<math style="vertical-align: -5px">f(x)=x^3-6x^2+5</math>,  
  
<span class="exam">a) Find the intervals in which the function increases or decreases.
+
<span class="exam">(a) Find the intervals in which the function increases or decreases.
  
<span class="exam">b) Find the local maximum and local minimum values.
+
<span class="exam">(b) Find the local maximum and local minimum values.
  
<span class="exam">c) Find the intervals in which the function concaves upward or concaves downward.
+
<span class="exam">(c) Find the intervals in which the function concaves upward or concaves downward.
  
<span class="exam">d) Find the inflection point(s).
+
<span class="exam">(d) Find the inflection point(s).
  
<span class="exam">e) Use the above information (a) to (d) to sketch the graph of <math>y=f(x)</math>.
+
<span class="exam">(e) Use the above information (a) to (d) to sketch the graph of &nbsp;<math style="vertical-align: -5px">y=f(x)</math>.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 1, Problem 9 Solution|'''<u>Solution</u>''']]
|-
 
|
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009A Sample Final 1, Problem 9 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by taking the derivative of <math>f(x)</math>. We have <math>f'(x)=3x^2-12x</math>.
 
|-
 
|Now, we set <math>f'(x)=0</math>. So, we have <math>0=3x(x-4)</math>.
 
|-
 
|Hence, we have <math>x=0</math> and <math>x=4</math>.
 
|-
 
|So, these values of <math>x</math> break up the number line into 3 intervals: <math>(-\infty,0),(0,4),(4,\infty)</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.
 
|-
 
|For <math>x=-1</math>, <math>f'(x)=15>0</math>.
 
|-
 
|For <math>x=1</math>, <math>f'(x)=-9<0</math>.
 
|-
 
|For <math>x=5</math>, <math>f'(x)=15>0</math>.
 
|-
 
|Thus, <math>f(x)</math> is increasing on <math>(-\infty,0),(4,\infty)</math> and decreasing on <math>(0,4)</math>.
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The local maximum occurs at <math>x=0</math> and the local minimum occurs at <math>x=4</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, the local maximum value is <math>f(0)=5</math> and the local minimum value is <math>f(4)=-27</math>.
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|To find the intervals when the function is concave up or concave down, we need to find <math>f''(x)</math>.
 
|-
 
|We have <math>f''(x)=6x-12</math>.
 
|-
 
|We set <math>f''(x)=0</math>.
 
|-
 
|So, we have <math>0=6x-12</math>. Hence, <math>x=2</math>.
 
|-
 
|This value breaks up the number line into two intervals: <math>(-\infty,2),(2,\infty)</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Again, we use test points in these two intervals.
 
|-
 
|For <math>x=0</math>, we have <math>f''(x)=-12<0</math>.
 
|-
 
|For <math>x=3</math>, we have <math>f''(x)=6>0</math>.
 
|-
 
|Thus, <math>f(x)</math> is concave up on the interval <math>(2,\infty)</math> and concave down on the interval <math>(-\infty,2)</math>.
 
|}
 
 
'''(d)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
| Using the information from part '''(c)''', there is one inflection point that occurs at <math>x=2</math>.
 
|-
 
|Now, we have <math>f(2)=8-24+5=-11</math>.
 
|-
 
|So, the inflection point is <math>(2,-11)</math>.
 
|}
 
 
'''(e)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
| Insert sketch here.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math>f(x)</math> is increasing on <math>(-\infty,0),(4,\infty)</math> and decreasing on <math>(0,4)</math>.
 
|-
 
|'''(b)''' The local maximum value is <math>f(0)=5</math> and the local minimum value is <math>f(4)=-27</math>.
 
|-
 
|'''(c)''' <math>f(x)</math> is concave up on the interval <math>(2,\infty)</math> and concave down on the interval <math>(-\infty,2)</math>.
 
|-
 
|'''(d)''' <math>(2,-11)</math>
 
|-
 
|'''(e)''' See part '''(e)''' above for graph.
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:59, 2 December 2017

Given the function  ,

(a) Find the intervals in which the function increases or decreases.

(b) Find the local maximum and local minimum values.

(c) Find the intervals in which the function concaves upward or concaves downward.

(d) Find the inflection point(s).

(e) Use the above information (a) to (d) to sketch the graph of  .


Solution


Detailed Solution


Return to Sample Exam