Difference between revisions of "009C Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<span class="exam">A curve is given in polar parametrically by  
 
<span class="exam">A curve is given in polar parametrically by  
::::::<span class="exam"><math>x(t)=3\sin t</math>
+
::<span class="exam"><math>x(t)=3\sin t</math>
::::::<span class="exam"><math>y(t)=4\cos t</math>
+
::<span class="exam"><math>y(t)=4\cos t</math>
::::::<span class="exam"><math>0\leq t \leq 2\pi</math>
+
::<span class="exam"><math>0\leq t \leq 2\pi</math>
  
<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve.
  
<span class="exam">b) Compute the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math>.
+
<span class="exam">(b) Compute the equation of the tangent line at &nbsp;<math style="vertical-align: -14px">t_0=\frac{\pi}{4}</math>.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 10 Solution|'''<u>Solution</u>''']]
|-
 
|Review tangent lines of polar curves
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009C Sample Final 1, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Insert sketch of curve
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to find the slope of the tangent line.
 
|-
 
|Since <math>\frac{dy}{dt}=-4\sin t</math> and <math>\frac{dx}{dt}=3\cos t</math>,
 
|-
 
|we have <math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}</math>.
 
|-
 
|So, at <math>t_0=\frac{\pi}{4}</math>, the slope of the tangent line is
 
|-
 
|<math>m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|-
 
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math>x(t)</math> and <math>y(t)</math>, we get
 
|-
 
|<math>x\bigg(\frac{\pi}{4}\bigg)=3\sin\bigg(\frac{\pi}{4}\bigg)=\frac{3\sqrt{2}}{2}</math> and
 
|-
 
|<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}</math>.
 
|-
 
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is
 
|-
 
|<math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' See '''(a)''' above for the graph.
 
|-
 
|'''(b)''' <math>y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 14:02, 3 December 2017

A curve is given in polar parametrically by

(a) Sketch the curve.

(b) Compute the equation of the tangent line at  .


Solution


Detailed Solution


Return to Sample Exam