Difference between revisions of "Multivariate Calculus 10B, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(29 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
:: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math>
 
:: <span class="exam">b) <math>\int_0^1 \int_0^{cos^{-1}(y)} e^{2x-y}~dxdy</math>
  
'''solution:'''
 
  
'''a'''
+
'''solution(a):'''
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!
 +
|-
 +
|Here we change order of integration, <math>\int _0^1 \int_0^x e^{\frac{y}{x}}~dydx = \int _0^1[xe^{\frac{y}{x}}|_{y = 0}^{y = x}]~dx = \int_0^1 x(e - 1)~dx = \frac{1}{2}x^2|_0^1(e - 1) = \frac{1}{2}(e - 1)</math>
  
<math>\draw [thick] (-2,2) % Draws a line
+
'''solution(b):'''
      to [out=10,in=190] (2,2)
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
      to [out=10,in=90] (6,0)  
+
!
      to [out=-90,in=30] (-2,-2);</math>
+
|-
 +
|Here we change order of integration, <math>\int _0^{\frac{\pi}{2}} \int_0^{cos(x)} e^{2x - y}~dydx = \int _0^{\frac{\pi}{2}}[-e^{2x -y}|_{y = 0}^{y = cos(x)}]~dx = \int_0^{\frac{\pi}{2}} [e^{2x} - e^{2x - cos(x)}]~dx = [\frac{1}{2}e^{2x} - \frac{1}{2 + sin(x)}e^{2x - cos(x)}]|_0^{\frac{\pi}{2}} = \frac{e^{\pi}}{6} + \frac{1}{2}(\frac{1}{e} - 1)</math>

Latest revision as of 23:30, 7 February 2016

Calculate the following integrals

a)
b)


solution(a):

Here we change order of integration,

solution(b):

Here we change order of integration,