Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "{| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |- | |} '''Solution:''' '''(a)''' {| class="mw-collapsible mw-collapsed" style = "te...") |
Kayla Murray (talk | contribs) |
||
(31 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <span class="exam"> Consider the following piecewise defined function: | |
− | |||
− | |||
− | |||
− | |||
− | + | ::<math>f(x) = \left\{ | |
+ | \begin{array}{lr} | ||
+ | x+5 & \text{if }x < 3\\ | ||
+ | 4\sqrt{x+1} & \text{if }x \geq 3 | ||
+ | \end{array} | ||
+ | \right. | ||
+ | </math> | ||
+ | <span class="exam">(a) Show that <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=3.</math> | ||
− | + | <span class="exam">(b) Using the limit definition of the derivative, and computing the limits from both sides, show that <math style="vertical-align: -3px">f(x)</math> is differentiable at <math style="vertical-align: 0px">x=3</math>. | |
− | + | <hr> | |
− | + | [[009A Sample Final 1, Problem 2 Solution|'''<u>Solution</u>''']] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ''' | + | [[009A Sample Final 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 15:41, 2 December 2017
Consider the following piecewise defined function:
(a) Show that is continuous at
(b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .