Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "{| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- | |} '''Solution:''' '''(a)''' {| class="mw-collapsible mw-collapsed" style = "te...")
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam"> Find the Taylor polynomial of degree 4 of &nbsp;<math style="vertical-align: -5px">f(x)=\cos^2x</math>&nbsp; at &nbsp;<math>a=\frac{\pi}{4}</math>.
!Foundations: &nbsp;  
 
|-
 
|
 
|}
 
  
'''Solution:'''
+
<hr>
 +
[[009C Sample Final 1, Problem 6 Solution|'''<u>Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009C Sample Final 1, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:08, 2 December 2017

Find the Taylor polynomial of degree 4 of    at  .


Solution


Detailed Solution


Return to Sample Exam